Starting from dimethyl (E)-2-{[(1-tert-butoxycarbonyl)-1H-indol-3-yl]methylene}succinate and (R)-2,2,5,5-tetramethyl-1,3-dioxolane-4-carbaldehyde, facile synthesis of (-)-epi-claulansine D was accomplished via condensation and two intramolecular cyclizations. The (-)-epi-claulansine D in the solid state exists in a metastable form, and after an induction period of 30-90 days, it underwent complete epimerization to exclusively deliver the desired natural product (-)-claulansine D in quantitative yield. The witnessed inversion of C-centrochirality in the solid state is conceptually novel and takes place for relatively higher crystal stability reasons. Base-catalyzed ring expansion of both (±)/(-)-epi-claulansine D and (±)/(-)-claulansine D resulted in (±)/(+)-epi-claulansine C in very good yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.7b02773 | DOI Listing |
Sensors (Basel)
December 2024
CERN, Esplanade des Particules 1, 1217 Meyrin, Switzerland.
Device simulation plays a crucial role in complementing experimental device characterisation by enabling deeper understanding of internal physical processes. However, for simulations to be trusted, experimental validation is essential to confirm the accuracy of the conclusions drawn. In the framework of semiconductor detector characterisation, one powerful tool for such validation is the Two Photon Absorption-Transient Current Technique (TPA-TCT), which allows for highly precise, three-dimensional spatially-resolved characterisation of semiconductor detectors.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Pharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!