A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections. | LitMetric

Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M) and rifampin (R) was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA) on durability of prophylaxis in an model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant (MDR-PA) was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant . Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697372PMC
http://dx.doi.org/10.1155/2017/3149536DOI Listing

Publication Analysis

Top Keywords

biopolymer film
8
surgical-site infections
8
implant-associated surgical-site
8
mesna
5
sodium mercaptoethane
4
mercaptoethane sulfonate
4
sulfonate reduces
4
reduces collagenolytic
4
collagenolytic degradation
4
degradation synergistically
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!