Blood stream infections can be caused by several pathogens such as viruses, fungi and bacteria and can cause severe clinical complications including sepsis. Delivery of appropriate and quick treatment is mandatory. However, it requires a rapid identification of the invading pathogen. The current gold standard for pathogen identification relies on blood cultures and these methods require a long time to gain the needed diagnosis. The use of experiments attempts to identify pathogen specific immune responses but these often lead to heterogeneous biomarkers due to the high variability in methods and materials used. Using gene expression profiles for machine learning is a developing approach to discriminate between types of infection, but also shows a high degree of inconsistency. To produce consistent gene signatures, capable of discriminating fungal from bacterial infection, we have employed Support Vector Machines (SVMs) based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint optimization constraining them to the same set of discriminating features increased the consistency of our biomarker list independently of leukocyte-type or experimental setup. Our gene signature showed an enrichment of genes of the lysosome pathway which was not uncovered by the use of independent classifiers. Moreover, our results suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR of the identified lysosome-related genes confirmed the distinct gene expression increase in monocytes during fungal infections. Concluding, our combined classifier approach presented increased consistency and was able to "unmask" signaling pathways of less-present immune cells in the used datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712586 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.02366 | DOI Listing |
Int J Mol Sci
January 2025
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
Cadmium (Cd) pollution poses an important problem, but limited information is available about the toxicology effects of Cd on freshwater invertebrates. We investigated the accumulation, oxidative stress, microbial community changes, and transcriptomic alterations in apple snails ) under Cd stress. The snails were exposed to the 10 μg/L Cd solution for 16 days, followed by a 16-day elimination period.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Methamphetamine is a highly addictive stimulant known to cause neurotoxicity, cognitive deficits, and immune dysregulation in the brain. Despite significant research, the molecular mechanisms driving methamphetamine-induced neurotoxicity and glial cell dysfunction remain poorly understood. This study investigates how methamphetamine disrupts glial cell function and contributes to neurodevelopmental and neurodegenerative processes.
View Article and Find Full Text PDFGenes (Basel)
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, 00185 Rome, Italy.
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of cellular homeostasis, overseeing the expression of a wide array of genes involved in cytoprotective processes such as antioxidant and proteostasis control, mitochondrial function, inflammation, and the metabolism of lipids and glucose. The accumulation of misfolded proteins triggers the release, stabilization, and nuclear translocation of NRF2, which in turn enhances the expression of critical components of both the proteasomal and lysosomal degradation pathways. This process facilitates the clearance of toxic protein aggregates, thereby actively maintaining cellular proteostasis.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Southern California Institute for Research and Education, VA Long Beach Medical Center, Long Beach, CA 90822, USA.
There are three FAM98 family proteins (FAM98A/B/C) in humans and mice. Their physiological functions remain largely unknown. We have previously reported that Fam98a interacts with Plekhm1 in murine osteoclasts and functions in lysosome trafficking/secretion and bone resorption in osteoclasts in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!