AI Article Synopsis

  • Peripheral neuropathic pain (PNP) affects the peripheral nervous system, commonly in the extremities, and this study explored the impact of peripheral nerve stimulation (PNS) on patients with PNP due to polyneuropathy.
  • Twelve patients participated, undergoing six stimulation therapies on the posterior tibial nerve, leading to an average pain reduction of 85.5% after the final treatment, with 75% of participants experiencing over a 50% decrease in pain after the first session.
  • The findings indicate PNS is effective and safe for treating PNP, but more research with larger groups is needed to confirm these results.

Article Abstract

Peripheral neuropathic pain (PNP) is caused by neuronal damage to the peripheral nervous system and usually affects the distal extremities. This open-label study examined the effect of short-term peripheral nerve stimulation (PNS) on individuals with PNP due to polyneuropathy. A total of 12 patients (mean age, 63.0 ± 10.0 years, 41.7% male) with daily bilateral PNP for at least 6 months (mean duration, 7.4 ± 7.8 years) received a total of six direct electrical stimulation therapies to the posterior tibial nerve at 3-4-day intervals. Eight patients completed the study and were included in the efficacy analysis. The average pain at baseline was 36.6 ± 3.80 estimated by the Short-Form McGill Pain Questionnaire. After the last stimulation, pain was significantly reduced by 85.5% to 4.88 ± 3.1 ( = 0.008). Six patients (75%) had over 50% decrease in pain after the first stimulation therapy and 99.2% after the final stimulation therapy. The patients also reported statistically significant decreases in pain level (measured by visual analog scale), ranging from 54.85% to 87.50% after each of the stimulations as compared to the pain experienced prior to the stimulations. The procedure was safe without any serious adverse events. PNS has demonstrated excellent efficacy and improvement of PNP symptoms. Further studies in larger patient populations are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716322PMC
http://dx.doi.org/10.2147/JPR.S137420DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
8
posterior tibial
8
tibial nerve
8
pain
8
neuropathic pain
8
stimulation therapy
8
patients
5
stimulation
5
stimulation posterior
4
nerve reduces
4

Similar Publications

A BEM-FMM TMS Coil Designer Using MATLAB Platform.

Brain Stimul

January 2025

Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA, 01609; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129; Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA, USA, 01609.

View Article and Find Full Text PDF

Interstitial cells of Cajal in the plane of the myenteric plexus (ICC-MY) serve as electrical pacemakers in the stomach and small intestine. A similar population of cells is found in the colon, but these cells do not appear to generate regular slow wave potentials, as characteristic in more proximal gut regions. Ca handling mechanisms in ICC-MY of the mouse proximal colon were studied using confocal imaging of muscles from animals expressing GCaMP6f exclusively in ICC.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Magnetic field-oriented conductive decellularized extracellular matrix hydrogel synergizes with electrical stimulation to promote spinal cord injury repair and electrophysiological function restoration.

Biomater Adv

December 2024

Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:

Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.

View Article and Find Full Text PDF

Purpose Of Review: The present investigation assesses efficacy of transcutaneous electrical nerve stimulation (TENS) on relief of cancer or chemotherapy-related pain. Patients with cancer experience a relatively high prevalence of pain that is reportedly undertreated. Therefore, this analysis is pertinent to determine if TENS is a useful complementary therapy considering its increase in accessibility and minimal side effect profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!