Restriction-modification systems are widespread genetic elements that protect bacteria from bacteriophage infections by recognizing and cleaving heterologous DNA at short, well-defined sequences called restriction sites. Bioinformatic evidence shows that restriction sites are significantly underrepresented in bacteriophage genomes, presumably because bacteriophages with fewer restriction sites are more likely to escape cleavage by restriction-modification systems. However, how mutations in restriction sites affect the likelihood of bacteriophage escape is unknown. Using the bacteriophage λ and the restriction-modification system EcoRI, we show that while mutation effects at different restriction sites are unequal, they are independent. As a result, the probability of bacteriophage escape increases with each mutated restriction site. Our results experimentally support the role of restriction site avoidance as a response to selection imposed by restriction-modification systems and offer an insight into the events underlying the process of bacteriophage escape.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746541 | PMC |
http://dx.doi.org/10.1098/rsbl.2017.0646 | DOI Listing |
BMC Bioinformatics
January 2025
Research Institute for Systems Biology and Medicine, Moscow, Russian Federation.
Background: Currently, synthetic genomics is a rapidly developing field. Its main tasks, such as the design of synthetic sequences and the assembly of DNA sequences from synthetic oligonucleotides, require specialized software. In this article, we present a program with a graphical interface that allows non-bioinformatics to perform the tasks needed in synthetic genomics.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai 200240, China. Electronic address:
Biogenic volatile organic compounds (BVOCs) are emitted by urban vegetation and can interact with anthropogenic pollutants to generate secondary organic aerosols (SOA) that are atmospheric pollutants in urban environments. In urban forests, SOA comprise up to 90 % of all fine aerosols (particulate matter smaller than 1 μm [PM]) in the summer. PM can greatly affect urban air quality and public health.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
The mechanical effects on carbon-based metal-free catalysts (C-MFCs) have rarely been explored, despite the global interest in C-MFCs as substitutes for noble metal catalysts. Stress is ubiquitous, whereas its dedicated study is severely restricted due to its frequent entanglement with other structural variables, such as dopants, defects, and interfaces in catalysis. Herein, we report a proof-of-concept study by establishing a platform to continuously apply strain to a highly oriented pyrolytic graphite (HOPG) lamina, simultaneously collecting electrochemical signals.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.
Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Chemical Engineering, School for Engineering Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA.
The ability to precisely engineer cyanobacterial metabolism first requires the ability to efficiently deliver engineered DNA constructs. Here, we investigate how natural transformation efficiencies in Synechococcus sp. PCC 7002 can be greatly improved by leveraging the native and abundant cyanobacterial Highly Iterated Palindrome 1 (HIP1) sequence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!