Copper is required for the activity of cytochrome oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of Additionally, assays in and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808751PMC
http://dx.doi.org/10.1074/jbc.RA117.000265DOI Listing

Publication Analysis

Top Keywords

copper
10
phosphate carrier
8
carrier slc25a3
8
copper transporter
8
cytochrome oxidase
8
transport copper
8
slc25a3
6
mitochondrial
6
mammalian phosphate
4
slc25a3 mitochondrial
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

To evaluate the effectiveness and feasibility of the copper bianstone scraping combined with Chinese modified termination hypertension dietary therapy program by comparing and analyzing the improvement of blood pressure, blood lipids and blood glucose in hypertensive patients who received copper bianstone scraping combined with Chinese modified termination hypertension dietary therapy intervention. We selected 160 cases of hypertensive patients from July 2022 to March 2024 for the study. They were divided into 80 cases in the comparison group and 80 cases in the observation group according to whether or not they underwent copper bianstone scraping combined with Chinese modified dietary therapy for termination of hypertension.

View Article and Find Full Text PDF

The electrification of the transport sector is crucial for reducing greenhouse gas emissions and the reliance on fossil fuels. Battery electric vehicles (BEVs) depend on critical materials (CMs) for their batteries and electronic components, yet their widespread adoption may face constraints due to the limited availability of CMs. This study assesses the implications of vehicle electrification and lightweighting (material substitution) on the U.

View Article and Find Full Text PDF

Binuclear silver(I) and copper(I) complexes, and , with bridging diphenylphosphine ligands were prepared. In , the silver(I) center is located inside a trigonal plane composed of three phosphorus donors from three separate and bridging dppm ligands. The fourth coordination site is filled with neighboring silver(I) ions.

View Article and Find Full Text PDF

Copper homeostasis and pregnancy complications: a comprehensive review.

J Assist Reprod Genet

January 2025

Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

Pregnancy complications pose challenges for both pregnant women and obstetricians globally, with the pathogenesis of many remaining poorly understood. Recently coined as a mode of cell death, cuproptosis has been proposed but remains largely unexplored. This process involves copper overload, resulting in the accumulation of fatty acylated proteins and subsequent loss of iron-sulfur cluster proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!