Digital Breast Tomosynthesis with Synthesized Two-Dimensional Images versus Full-Field Digital Mammography for Population Screening: Outcomes from the Verona Screening Program.

Radiology

From the UOSD Breast Unit ULSS9, Ospedale di Marzana, Piazzale Lambranzi, 1, 37034 Verona, Italy (F.C., S.B., G.R., L.C., P.B.); Veneto Tumour Registry, Veneto Region, Padua, Italy (M.Z.); Dipartimento di Scienze Radiologiche, Università Cattolica del Sacro Cuore, Rome, Italy (R.R); Organizational Unit Prevention and Public Health, Veneto Region, Venice, Italy (C.F.); DAI Patologia e Diagnostica, Azienda Ospedaliera Universitaria Integrata, Verona, Italy (S.M.); and Sydney School of Public Health, Sydney Medical School, University of Sydney, Sydney, Australia (N.H.).

Published: April 2018

Purpose To examine the outcomes of a breast cancer screening program based on digital breast tomosynthesis (DBT) plus synthesized two-dimensional (2D) mammography compared with those after full-field digital mammography (FFDM). Materials and Methods This prospective study included 16 666 asymptomatic women aged 50-69 years who were recruited in April 2015 through March 2016 for DBT plus synthetic 2D screening in the Verona screening program. A comparison cohort of women screened with FFDM (n = 14 423) in the previous year was included. Screening detection measures for the two groups were compared by calculating the proportions associated with each outcome, and the relative rates (RRs) were estimated with multivariate logistic regression. Results Cancer detection rate (CDR) for DBT plus synthetic 2D imaging was 9.30 per 1000 screening examinations versus 5.41 per 1000 screening examinations with FFDM (RR, 1.72; 95% confidence interval [CI]: 1.30, 2.29). CDR was significantly higher in patients screened with DBT plus synthetic 2D imaging than in those screened with FFDM among women classified as having low breast density (RR, 1.53; 95% CI: 1.13, 2.10) or high breast density (RR, 2.86; 95% CI: 1.42, 6.25). The positive predictive value (PPV) for recall was almost doubled with DBT plus synthetic 2D imaging: 23.3% versus 12.9% of recalled patients who were screened with FFDM (RR, 1.81; 95% CI: 1.34, 2.47). The recall rate was similar between groups (RR, 0.95; 95% CI: 0.84, 1.06), whereas the recall rate with invasive assessment was higher for DBT plus synthetic 2D imaging than for FFDM (RR, 1.93; 95% CI: 1.31, 2.03). The mean number of screening studies interpreted per hour was significantly lower for screening examinations performed with DBT plus synthetic 2D imaging (38.5 screens per hour) than with FFDM (60 screens per hour) (P < .001). Conclusion DBT plus synthetic 2D imaging increases CDRs with recall rates comparable to those of FFDM. DBT plus synthetic 2D imaging increased image reading time and the time needed for invasive assessments. RSNA, 2017.

Download full-text PDF

Source
http://dx.doi.org/10.1148/radiol.2017170745DOI Listing

Publication Analysis

Top Keywords

dbt synthetic
32
synthetic imaging
28
screening program
12
screened ffdm
12
screening examinations
12
screening
10
dbt
9
digital breast
8
breast tomosynthesis
8
synthesized two-dimensional
8

Similar Publications

Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Shankhpushpi, (Clitoria ternatea L.) with rasayana properties in vitro.

J Ayurveda Integr Med

January 2025

Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:

Background: Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases.

View Article and Find Full Text PDF

Purpose: Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to compare the performance of a traditional machine learning CADe algorithm for synthetic 2D mammography to a deep learning-based AI algorithm for DBT on the same mammograms.

Methods: Mammographic examinations from 764 patients (mean age 58 years ± 11) with 106 biopsy-proven cancers and 658 cancer-negative cases were analyzed by a CADe algorithm (ImageChecker v10.

View Article and Find Full Text PDF

Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast.

View Article and Find Full Text PDF

 Synthesized mammography (SM) refers to two-dimensional (2D) images derived from the digital breast tomosynthesis (DBT) data. It can reduce the radiation dose and scan duration when compared with conventional full-field digital mammography (FFDM) plus tomosynthesis.  To compare the diagnostic performance of 2D FFDM with synthetic mammograms obtained from DBT in a diagnostic population.

View Article and Find Full Text PDF

General Acetal-Protected Aldehyde Strategy for Facile Synthesis of Covalent Organic Frameworks with Splendid Crystallinity and Uniform Morphology.

Chemistry

December 2024

Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Nanosciences and Materials Engineering.

Crystallinity and morphology are critical factors that closely related to the properties and applications of covalent organic frameworks (COFs). However, the controlled synthesis of COFs with both high crystallinity and uniform morphology remains a significant challenge due to uncontrollable polymerization and complex reaction conditions. In this work, we present a general acetal-protected aldehyde protocol for the facile synthesis of imine-linked COFs, which enables the simultaneous optimization of crystallinity and morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!