For the treatment of acute cervical spinal cord injuries, a local epidural cooling system using a percutaneous technique was proposed. In this animal study, regional low temperature was obtained stably in the cervical epidural space (CED) without decreasing temperatures at the rectum and the thoracic epidural space. Three stainless steel tubes were inserted percutaneously using the lateral approach into 3 serial interspinous spaces of the neck of 12 beagles under radiographic guidance. Two temperature probes were inserted into the CEDs at the level of the middle cooling tube. A third temperature probe was inserted into the epidural space at the Th13 level. A fourth temperature probe was placed in the rectum as a control. Iced water was circulated in the cooling tubes for 60 minutes. Temperatures were monitored every 10 seconds for 90 minutes, with the minimum temperatures during the period being recorded. The mean minimum temperatures recorded in the dorsal CED (min-CED-dorsal), the lateral CED (min-CED-lateral), the Th13 epidural space (min-T13ED), and the rectum (min-rectum), were 16.0 ± 0.6°C, 22.6 ± 1.6°C, 35.4 ± 0.2°C, and 35.5 ± 0.2°C, respectively. There was a statistically significant difference between the mean min-CED-dorsal and min-rectum temperatures (p < 0.0001). The method introduced above was effective in reducing cervical epidural temperature selectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ther.2017.0013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!