Different catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene. The new derivatives showed improved antioxidant effects in the DPPH test and inhibitory activity against the influenza A/PR8/H1N1 virus. These data represent a new entry for highly oxidized coumarins showing an antiviral activity possibly based on the control of the intracellular redox value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jnatprod.7b00665 | DOI Listing |
J Nat Prod
December 2017
Department of Ecology and Biology, University of Tuscia, Via C. De Lellis, Viterbo, 01100, Italy.
Different catechol and pyrogallol derivatives have been synthesized by oxidation of coumarins with 2-iodoxybenzoic acid (IBX) in DMSO at 25 °C. A high regioselectivity was observed in accordance with the stability order of the incipient carbocation or radical benzylic-like intermediate. The oxidation was also effective in water under heterogeneous conditions by using IBX supported on polystyrene.
View Article and Find Full Text PDFJ Nat Prod
May 2017
Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, I-95125 Catania, Italy.
A chemoenzymatic synthesis of a small library of dimeric neolignans inspired by magnolol (1) is reported. The 2-iodoxybenzoic acid (IBX)-mediated regioselective ortho-hydroxylation of magnolol is described, affording the bisphenols 6 and 7. Further magnolol analogues (12, 13, 15-17, 19-23) were obtained from eugenol (3), tyrosol (4), and homovanillic alcohol (5), through horseradish peroxidase (HRP)-mediated oxidative coupling and regioselective ortho-hydroxylation or ortho-demethylation in the presence of IBX, followed by reductive treatment with NaSO.
View Article and Find Full Text PDFOrg Lett
November 2015
Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan India.
A simple and highly practical one-pot formal [4 + 2] cycloaddition approach for the enantioselective synthesis of N-PMP-1,2-dihydropyridines (DHPs) is described. This chemistry involves an amino-catalytic direct Mannich reaction/cyclization followed by IBX-mediated chemo- and regioselective oxidation sequence between readily available aqueous glutaraldehyde and imines under very mild conditions. A series of N-PMP-1,2-DHPs have been prepared in high yields and excellent enantioselectivity.
View Article and Find Full Text PDFChem Phys Lipids
February 2014
Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajousui, Setagaya, Tokyo 156-8550, Japan.
Mild and regioselective conversion of 3-keto-5α- and 3-keto-5β-steroids (trans A/B- and cis A/B-ring juncture, respectively) to the corresponding enones (Δ(1)- and Δ(4)-3-ketones) by treatment with o-iodoxybenzoic acid (IBX) catalyzed by trifluoroacetic acid (TFA) in DMSO, is described. The IBX-mediated reaction involved dehydrogenation of the α- and β-hydrogen atoms of the 3-ketones to give the enones regioselectively in good isolated yields without concomitant formation of related dienones and trienones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!