Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flexible nanoscale confinement is critical to understanding the role that bending fluctuations play on biological processes where soft interfaces are ubiquitous or to exploit confinement effects in engineered systems where inherently flexible 2D materials are pervasively employed. Here, using molecular dynamics simulations, we compare the phase behavior of water confined between flexible and rigid graphene sheets as a function of the in-plane density, ρ. We find that both cases show commensurate mono-, bi-, and trilayered states; however, the water phase in those states and the transitions between them are qualitatively different for the rigid and flexible cases. The rigid systems exhibit discontinuous transitions between an (n)-layer and an (n+1)-layer state at particular values of ρ, whereas under flexible confinement, the graphene sheets bend to accommodate an (n)-layer and an (n+1)-layer state coexisting in equilibrium at the same density. We show that the flexible walls introduce a very different sequence of ice phases and their phase coexistence with vapor and liquid phases than that observed with rigid walls. We discuss the applicability of these results to real experimental systems to shed light on the role of flexible confinement and its interplay with commensurability effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.7b06805 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!