Impairments in gait occur after alcohol consumption, and, if detected in real-time, could guide the delivery of "just-in-time" injury prevention interventions. We aimed to identify the salient features of gait that could be used for estimating blood alcohol content (BAC) level in a typical drinking environment. We recruited 10 young adults with a history of heavy drinking to test our research app. During four consecutive Fridays and Saturdays, every hour from 8 p.m. to 12 a.m., they were prompted to use the app to report alcohol consumption and complete a 5-step straight-line walking task, during which 3-axis acceleration and angular velocity data was sampled at a frequency of 100 Hz. BAC for each subject was calculated. From sensor signals, 24 features were calculated using a sliding window technique, including energy, mean, and standard deviation. Using an artificial neural network (ANN), we performed regression analysis to define a model determining association between gait features and BACs. Part (70%) of the data was then used as a training dataset, and the results tested and validated using the rest of the samples. We evaluated different training algorithms for the neural network and the result showed that a Bayesian regularization neural network (BRNN) was the most efficient and accurate. Analyses support the use of the tandem gait task paired with our approach to reliably estimate BAC based on gait features. Results from this work could be useful in designing effective prevention interventions to reduce risky behaviors during periods of alcohol consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5751642PMC
http://dx.doi.org/10.3390/s17122897DOI Listing

Publication Analysis

Top Keywords

neural network
16
alcohol consumption
12
artificial neural
8
blood alcohol
8
alcohol content
8
prevention interventions
8
gait features
8
alcohol
5
gait
5
network
4

Similar Publications

Adaptive deep feature representation learning for cross-subject EEG decoding.

BMC Bioinformatics

December 2024

College of Computer and Information Engineering/College of Artificial Intelligence, Nanjing Tech University, Nanjing, 210093, China.

Background: The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies.

View Article and Find Full Text PDF

Background: Cognitive impairment is prevalent in bipolar disorder (BD), and has negative impacts on functional impairments and quality of life, despite euthymic states in most individuals. The underlying neurobiological basis of cognitive impairment in BD is still unclear.

Methods: To further explore potential connectivity abnormalities and their associations with cognitive impairment, we conducted a degree centrality (DC) analysis and DC (seed)-based functional connectivity (FC) approach in unmedicated, euthymic individuals with BD.

View Article and Find Full Text PDF

Background: Wide QRS complex tachycardia (WCT) differentiation into ventricular tachycardia (VT) and supraventricular wide complex tachycardia (SWCT) remains challenging despite numerous 12-lead electrocardiogram (ECG) criteria and algorithms. Automated solutions leveraging computerized ECG interpretation (CEI) measurements and engineered features offer practical ways to improve diagnostic accuracy. We propose automated algorithms based on (i) WCT QRS polarity direction (WCT Polarity Code [WCT-PC]) and (ii) QRS polarity shifts between WCT and baseline ECGs (QRS Polarity Shift [QRS-PS]).

View Article and Find Full Text PDF

Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades.

View Article and Find Full Text PDF

A computational deep learning investigation of animacy perception in the human brain.

Commun Biol

December 2024

Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.

The functional organization of the human object vision pathway distinguishes between animate and inanimate objects. To understand animacy perception, we explore the case of zoomorphic objects resembling animals. While the perception of these objects as animal-like seems obvious to humans, such "Animal bias" is a striking discrepancy between the human brain and deep neural networks (DNNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!