A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3102
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3104

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3104
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives. | LitMetric

Room-temperature liquid metals (LMs) are attractive candidates for thermal interface materials (TIMs) because of their moderately high thermal conductivity and liquid nature, which allow them to conform well to mating surfaces with little thermal resistance. However, gallium-based LMs may be of concern due to the gallium-driven degradation of many metal microelectronic components. We present a three-component composite with LM, copper (Cu) microparticles, and a polymer matrix, as a cheaper, noncorrosive solution. The solid copper particles alloy with the gallium in the LM, in situ and at room temperature, immobilizing the LM and eliminating any corrosion issues of nearby components. Investigation of the structure-property-process relationship of the three-component composites reveals that the method and degree of additive blending dramatically alter the resulting thermal transport properties. In particular, microdispersion of any combination of the LM and Cu additives results in a large number of interfaces and a thermal conductivity below 2 W m K. In contrast, a shorter blending procedure of premixed LM and Cu particle colloid into the polymer matrix yields a composite with polydispersed filler and effective intrinsic thermal conductivities of up to 17 W m K (effective thermal conductivity of up to 10 W m K). The LM-Cu colloid alloying into CuGa provides a limited, but practical, time frame to cast the uncured composite into the desired shape, space, or void before the composite stiffens and cures with permanent characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b15814DOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
polymer matrix
8
thermal
7
situ alloying
4
alloying thermally
4
thermally conductive
4
conductive polymer
4
polymer composites
4
composites combining
4
combining liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!