MS2 phage-like particles (MS2 PLP) are artificially constructed pseudo-viral particles derived from bacteriophage MS2. They are able to carry a specific single stranded RNA (ssRNA) sequence of choice inside their capsid, thus protecting it against the effects of ubiquitous nucleases. Such particles are able to mimic ssRNA viruses and, thus, may serve as the process control for molecular detection and quantification of such agents in several kinds of matrices, vaccines and vaccine candidates, drug delivery systems, and systems for the display of immunologically active peptides or nanomachines. Currently, there are several different in vivo plasmid-driven packaging systems for production of MS2 PLP. In order to combine all the advantages of the available systems and to upgrade and simplify the production and purification of MS2 PLP, a one-plasmid double-expression His-tag system was designed. The described system utilizes a unique fusion insertional mutation enabling purification of particles using His-tag affinity. Using this new production system, highly pure MS2 PLP can be quickly produced and purified by a fast performance liquid chromatography (FPLC) approach. The system can be easily adapted to produce other MS2 PLP with different properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727534 | PMC |
http://dx.doi.org/10.1038/s41598-017-17951-5 | DOI Listing |
Sci Rep
December 2017
Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
MS2 phage-like particles (MS2 PLP) are artificially constructed pseudo-viral particles derived from bacteriophage MS2. They are able to carry a specific single stranded RNA (ssRNA) sequence of choice inside their capsid, thus protecting it against the effects of ubiquitous nucleases. Such particles are able to mimic ssRNA viruses and, thus, may serve as the process control for molecular detection and quantification of such agents in several kinds of matrices, vaccines and vaccine candidates, drug delivery systems, and systems for the display of immunologically active peptides or nanomachines.
View Article and Find Full Text PDFFront Microbiol
December 2016
Veterinary Research Institute, Department of Food and Feed Safety Brno, Czechia.
The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV) are used. The present article describes the process of preparation and use of such PCV- MS2 phage-like particles (MS2 PLP) - in RT-qPCR detection and quantification of enteric RNA viruses.
View Article and Find Full Text PDFJ Biol Chem
April 2009
Department of Neurology, University of Kentucky, Lexington, Kentucky 40536, USA.
In this study, we sought to investigate the mechanism by which heterogeneous nuclear ribonucleoprotein (hnRNP) H and F regulate proteolipid protein (PLP)/DM20 alternative splicing. G-rich sequences in exon 3B, G1 and M2, are required for hnRNPH- and F-mediated regulation of the PLP/DM20 ratio and, when placed between competing 5' splice sites in an alpha-globin minigene, direct hnRNPH/F-regulated alternative splicing. In contrast, the activity of the intronic splicing enhancer, which is necessary for PLP splicing, is only modestly reduced by removal of hnRNPH/F both in PLP and alpha-globin gene context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!