The complicated synthesis procedure and limited preparation size of hydrogel inhibit its clinical application. Therefore, a facile preparation method for large-size hydrogel is required. In this study, a series of curcumin (Cur)/polyvinyl alcohol (PVA) hydrogel in a large size with different Cur concentrations is prepared by a facile physical-chemical crosslinking. The physicochemical properties, antibacterial performance and accelerating wound healing ability are evaluated with the aim of attaining a novel and effective wound dressing. The results show that the as-prepared hydrogel with the optimal Cur to PVA volume ratio of 1:5 (20% Cur/PVA) exhibits the best antibacterial abilities to E. coli (85.6%) and S. aureus (97%) than other hydrogels. When the volume ratio of Cur to PVA is 1:10 (10% Cur/PVA), the hydrogel can significantly accelerate the wound healing in rats, and successfully reconstruct intact and thickened epidermis during 14 day of healing of impaired wounds after histological examination. In one word, the present approach can shed new light on designing new type of hydrogels with promising applications in wound dressing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2017.1417002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!