A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation. | LitMetric

Nasal epithelial barrier disruption by particulate matter ≤2.5 μm via tight junction protein degradation.

J Appl Toxicol

Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.

Published: May 2018

Upper airway diseases including sinonasal disorders may be caused by exposure to fine particulate matter (≤2.5 μm; PM2.5), as proven by epidemiological studies. PM2.5 is a complex entity whose chemical constituents and physicochemical properties are not confined to a single, independent "particle" but which in this study means a distinctive environmental "toxin." The mechanism whereby PM2.5 induces nasal epithelial barrier dysfunction leading to sinonasal pathology remains unknown. In the present study, human nasal epithelial cells were exposed to non-cytotoxic doses of PM2.5 to examine how PM2.5 affects the nasal epithelial barrier. Tight junction (TJ) integrity and function were assessed by transepithelial electric resistance and paracellular permeability. The expression levels of TJ proteins such as zona occludens-1, occludin and claudin-1 were assessed by immunofluorescence staining and western blot. PM2.5 exposure induced epithelial barrier dysfunction as reflected by increased paracellular permeability and decreased transepithelial electric resistance. TJ proteins zona occludens-1, occludin and claudin-1 were found to be downregulated. Pretreatment with N-acetyl-l-cysteine alleviated PM2.5-mediated reactive oxygen species generation in RPMI 2650 cells, further preventing barrier dysfunction and attenuating the degradation of TJ proteins. These results suggest that PM2.5 induces nasal epithelial barrier disruption via oxidative stress, and N-acetyl-l-cysteine counteracts this PM2.5-mediated effect. Thus, nasal epithelial barrier disruption caused by PM2.5, which leads to sinonasal disease, may be prevented or treated through the inhibition of reactive oxygen species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3573DOI Listing

Publication Analysis

Top Keywords

nasal epithelial
24
epithelial barrier
24
barrier disruption
12
barrier dysfunction
12
particulate matter
8
matter ≤25
8
≤25 μm
8
tight junction
8
pm25
8
pm25 induces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!