Purpose: Scattered radiation remains to be a major cause of image quality degradation in Flat Panel Detector (FPD)-based Cone-beam computed tomography (CBCT). We have been investigating a novel two-dimensional antiscatter grid (2D-ASG) concept to reduce scatter intensity, and hence improve CBCT image quality. We present the first CBCT imaging experiments performed with the 2D-ASG prototype, and demonstrate its efficacy in improving CBCT image quality.
Methods: A 2D-ASG prototype with septa focused to x-ray source was additively manufactured from tungsten and mounted on a Varian TrueBeam CBCT system. CBCT projections of phantoms were acquired with an offset detector geometry using TrueBeam's "developer" mode. To minimize the effect of gantry flex, projections were gain corrected on angle-specific bases. CBCT images were reconstructed using a filtered backprojection algorithm and image quality improvement was quantified by measuring contrast-to-noise ratio (CNR) and CT number accuracy in images acquired with no antiscatter grid (NO-ASG), conventional one dimensional antiscatter grid (1D-ASG), and the 2D-ASG prototype.
Results: A significant improvement in contrast resolution was achieved using our 2D-ASG prototype compared to results of 1D-ASG and NO-ASG acquisitions. Compared to NO-ASG and 1D-ASG experiments, the CNR of material inserts improved by as much as 86% and 54% respectively. Using 2D-ASG, CT number underestimation in water equivalent material section of the phantom was reduced by up to 325 HU when compared to NO-ASG and up to 179 HU when compared to 1D-ASG.
Conclusion: We successfully performed the first CBCT imaging experiments with a 2D-ASG prototype. 2D-ASG provided significantly higher CT number accuracy, higher CNR, and diminished scatter-induced image artifacts in qualitative evaluations. We strongly believe that utilization of a 2D-ASG may potentially lead to better soft tissue visualization in CBCT and may enable novel clinical applications that require high CT number accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807157 | PMC |
http://dx.doi.org/10.1002/mp.12724 | DOI Listing |
Background And Aims: Optimization of fluoroscopic image quality for reducing radiation exposure in cryoballoon pulmonary vein isolation (CB-PVI) has not yet been fully investigated. Therefore, we tried to compare the radiation doses among three different X-ray system settings.
Methods: Consecutive 148 patients scheduled for their first CB-PVI were prospectively enrolled: low dose with the use of an anti-scatter grid for the first 51 patients (LD + G group), low dose without an anti-scatter grid for the subsequent 46 patients (LD-G group), and ultralow dose (ULD group) with an anti-scatter grid for the remaining 51 patients.
Biomed Phys Eng Express
December 2024
Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Grand-Pré 1, 1007 Lausanne, Switzerland.
This work proposes a new method to assess the performance of radiographic anti-scatter grids (ASGs) without the use of a narrow primary beam, which is difficult to achieve.Three general purpose ASGs were evaluated, two marketed ASGs and a low frequency and high ratio prototype ASG with molybdenum lamellae. A range of high scatter x-ray beams were used in a standardized geometry, with energies ranging from 60 kV to 121 kV, for five beam sizes between 10 × 10 and 30 × 30 cm.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Radiation Oncology, University of Colorado School of Medicine, 1665 Aurora Court, Suite 1032, Mail Stop F-706, Aurora, CO, 80045, USA.
Cone beam computed tomography (CBCT) has potential advantages for developing portable, cost-effective point-of-care CT systems for intracranial imaging, such as early stroke diagnosis, hemorrhage detection, and intraoperative navigation. However, large volume imaging with flat panel detector based CBCT significantly increases the scattered radiation fluence which reduces its image quality and utility. To address these issues, a compact CBCT concept with enhanced image quality was investigated for intracranial imaging.
View Article and Find Full Text PDFMed Phys
January 2025
Medical Physics Department, Queen's Centre for Oncology and Haematology, Castle Hill Hospital, Hull University Teaching Hospitals NHS Trust, Hull, UK.
Background: The non-prewhitening computational model observer with eye filter (NPWE) has been shown to reasonably predict human observer performance in general radiography and is an appropriate substitute when real clinical trials are not feasible. In this study, the NPWE model observer is used to detect specific tasks (circular designer nodules) ranging between 1 and 30 mm in diameter using chest and abdomen phantom images acquired across the diagnostic energy range (60-125 kVp) with and without an anti-scatter grid.
Purpose: The aim of this study was to derive tube voltage (kVp) settings that return maximal NPWE detectability (d') of designer nodules, for digital radiography (DR) chest and abdomen imaging.
Phys Med Biol
August 2024
Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China.
This study aims at developing a simple and rapid Compton scatter correction approach for cone-beam CT (CBCT) imaging.In this work, a new Compton scatter estimation model is established based on two distinct CBCT scans: one measures the full primary and scatter signals without anti-scatter grid (ASG), and the other measures a portion of primary and scatter signals with ASG. To accelerate the entire data acquisition speed, a half anti-scatter grid (h-ASG) that covers half of the full detector surface is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!