Human-mediated changes in landscapes can facilitate niche expansion and accelerate the adaptation of insect species. The interaction between the evolutionary history of the sugarcane borer, Diatraea saccharalis Fabricius, and historical and modern agricultural activity in Brazil shaped its spatial genetic structure, facilitating ecological divergence and incipient host shifting. Based on microsatellite data, STRUCTURE analyses identified two (K = 2) and three (K = 3) significant genetic clusters that corresponded to: (a) a strong signal of spatial genetic structure and, (b) a cryptic signal of host differentiation. We inferred that K = 2 reflects the footprint of agricultural activity, such as expansion of crop production (sugarcane and maize), unintentional dispersion of pests, and management practices. In contrast, K = 3 indicated incipient host differentiation between larvae collected from sugarcane or maize. Our estimates of population size changes indicated that a historical bottleneck was associated with a reduction of sugarcane production ≈200 years ago. However, a more recent population expansion was detected (>1950s), associated with agricultural expansion of large crop production into previously unfarmed land. Partial Mantel tests supported our hypothesis of incipient host adaptation, and identified isolation-by-environment (e.g., host plant) in São Paulo and Minas Gerais states, where sugarcane has been traditionally produced in Brazil. The impact of agricultural production on D. saccharalis may continue, as the current population structure may hinder the efficacy of refuge plants in delaying insect resistance evolution to Bt toxin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837133 | PMC |
http://dx.doi.org/10.1038/s41437-017-0018-1 | DOI Listing |
Gastro Hep Adv
August 2024
Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.
The development of hepatic metastases is the leading cause of mortality in gastrointestinal (GI) cancers and substantial research efforts have been focused on elucidating the intricate mechanisms by which tumor cells successfully migrate to, invade, and ultimately colonize the liver parenchyma. Recent evidence has shown that perturbations in myeloid biology occur early in cancer development, characterized by the initial expansion of specific innate immune populations that promote tumor growth and facilitate metastases. This review summarizes the pathophysiology underlying the proliferation of myeloid cells that occurs with incipient neoplasia and explores the role of innate immune-host interactions, specifically granulocytes and neutrophil extracellular traps, in promoting hepatic colonization by tumor cells through the formation of the "premetastatic niche".
View Article and Find Full Text PDFMonaldi Arch Chest Dis
January 2025
Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.
Mycobacterium tuberculosis has been known to infect humans for eons. It is an airborne infectious disease transmitted through droplet nuclei of 1 to 5 µm in diameter. Historically, tuberculosis (TB) was considered a distinct condition characterized by TB infection and active TB disease.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
The acquisition of multidrug resistance by pathogenic bacteria is a potentially incipient pandemic. Horizontal transfer of DNA from mobile integrative conjugative elements (ICEs) provides an important way to introduce genes that confer antibiotic (Ab)-resistance in recipient cells. Sizable numbers of SXT/R391 ICEs encode a hypermutagenic Rum DNA polymerase (Rum pol), which has significant homology with Escherichia coli pol V.
View Article and Find Full Text PDFEvol Lett
September 2024
Department of Invertebrates, Natural History Museum of Geneva, Geneva, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!