Disease-associated variants in the human genome are continually being identified using DNA sequencing technologies that are especially effective for Mendelian disorders. Here we sequenced whole genome to high coverage (>30×) of 6 members of a 7-generation family with dwarfism from a consanguineous tribe in Pakistan to determine the causal variant(s). We identified a missense variant rs111033552 (c.2011T>C [p.Ser671Pro]) located in COL10A1 (encodes the alpha chain of type X collagen) as the most likely contributor to the dwarfism. We further confirmed the variant in 22 family members using Sanger sequencing. All affected individuals are heterozygous for the missense mutation rs111033552 and no individual homozygous was observed. Moreover, the mutation was absent in 69,985 individuals representing >150 global populations. Taking advantage of whole-genome sequencing data, we also examined other variant forms, including copy number variation and insertion/deletion, but failed to identify such variants enriched in the affected individuals. Thus rs111033552 had priority for linkage with dwarfism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5837121 | PMC |
http://dx.doi.org/10.1038/s41437-017-0021-6 | DOI Listing |
Cancer Res Treat
December 2024
Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Purpose: This study aimed to conduct a comprehensive genetic analysis of patients with Langerhans cell histiocytosis (LCH), focusing on the frequency of MAPK pathway mutations, detailed mutation profiles of MAPK pathway genes, and their correlation with clinical features and prognosis in Korean LCH patients.
Materials And Methods: We performed targeted next-generation sequencing, capable of capturing exons from 382 cancer-related genes, on genomic DNA extracted from formaldehyde-fixed and paraffin-embedded samples of 45 pathologically confirmed LCH patients.
Results: The majority of patients (91.
Am J Med Genet A
December 2024
Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
The Houge type of X-linked syndromic intellectual developmental disorder (MRXSHG) encompasses a spectrum of neurodevelopmental disorders characterized by intellectual disability (ID), language/speech delay, attention issues, and epilepsy. These conditions arise from hemizygous or heterozygous deletions, along with point mutations, affecting CNKSR2, a gene located at Xp22.12.
View Article and Find Full Text PDFStem Cell Reports
December 2024
Section for Neurobiology, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark; Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK. Electronic address:
O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
October 2024
Summary: HDR is a rare autosomal dominant genetic disorder characterized by the triad of hypoparathyroidism, sensorineural deafness and renal anomalies caused by haploinsufficiency loss of function of the GATA-binding protein 3 (GATA3) gene. We present a case of a 56-year-old male diagnosed with hypoparathyroidism, sensorineural deafness, renal hypoplasia and epilepsy. Genetic testing revealed a novel GATA3 heterozygous mutation c.
View Article and Find Full Text PDFJHEP Rep
January 2025
The Institute for Translational Medicine and Therapeutics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Background & Aim: An unbiased genome-first approach can expand the molecular understanding of specific genes in disease-agnostic biobanks for deeper phenotyping. represents a good candidate for this approach due to its known association with steatotic liver disease (SLD).
Methods: We screened participants with whole-exome sequences in the Penn Medicine Biobank (PMBB, n >40,000) and the UK Biobank (UKB, n >200,000) for protein-altering variants in and evaluated their association with liver phenotypes and clinical outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!