A competent DNA damage response (DDR) helps prevent cancer, but once cancer has arisen, DDR can blunt the efficacy of chemotherapy and radiotherapy that cause lethal DNA breakage in cancer cells. Thus, blocking DDR may improve the efficacy of these modalities. Here, we report a new DDR mechanism that interfaces with inflammatory signaling and might be blocked to improve anticancer outcomes. Specifically, we report that the ubiquitin-editing enzyme A20/TNFAIP3 binds and inhibits the E3 ubiquitin ligase RNF168, which is responsible for regulating histone H2A turnover critical for proper DNA repair. A20 induced after DNA damage disrupted RNF168-H2A interaction in a manner independent of its enzymatic activity. Furthermore, it inhibited accumulation of RNF168 and downstream repair protein 53BP1 during DNA repair. A20 was also required for disassembly of RNF168 and 53BP1 from damage sites after repair. Conversely, A20 deletion increased the efficiency of error-prone nonhomologous DNA end-joining and decreased error-free DNA homologous recombination, destablizing the genome and increasing sensitivity to DNA damage. In clinical specimens of invasive breast carcinoma, A20 was widely overexpressed, consistent with its candidacy as a therapeutic target. Taken together, our findings suggest that A20 is critical for proper functioning of the DDR in cancer cells and it establishes a new link between this NFκB-regulated ubiquitin-editing enzyme and the DDR pathway. This study identifies the ubiquitin-editing enzyme A20 as a key factor in mediating cancer cell resistance to DNA-damaging therapy, with implications for blocking its function to leverage the efficacy of chemotherapy and radiotherapy. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-17-2143DOI Listing

Publication Analysis

Top Keywords

dna damage
16
ubiquitin-editing enzyme
12
dna
9
damage response
8
cell resistance
8
resistance dna-damaging
8
dna-damaging therapy
8
efficacy chemotherapy
8
chemotherapy radiotherapy
8
cancer cells
8

Similar Publications

Cytotoxicity and genotoxicity of orthodontic bands after aging: an in-vitro study.

BMC Oral Health

January 2025

Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, P.O. Box 71345-3119, Shiraz, Iran.

Background: This investigation sought to evaluate cytotoxic and genotoxic effects of two different types of orthodontic bands after aging in acidic and neutral artificial saliva using human gingival fibroblast-like (HGF1-PI 1) cell lines.

Methods: Two commercial brands of orthodontic molar bands (American orthodontic (AO) and 3 S-dental bands), commonly used by orthodontists, were tested. These bands were divided into four groups to examine the effects of aging following thermocycling, and pH variations (pH = 4.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Besides the important pathogenic mechanisms of melanoma, including BRAF-driven and immunosuppressive microenvironment, genomic instability and abnormal DNA double-strand breaks (DSB) repair are significant driving forces for its occurrence and development. This suggests investigating novel therapeutic strategies from the synthetic lethality perspective. Poly (ADP-ribose) polymerase 4 (PARP4) is known to be a member of the PARP protein family.

View Article and Find Full Text PDF

Aflatoxin B-induced DNA adduct formation in murine kidney and liver.

Environ Toxicol Pharmacol

January 2025

Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239; Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239.

Aflatoxicosis is a life-threatening nephrotoxic condition arising from eating foods highly contaminated with aflatoxin-producing molds. Additionally, chronic aflatoxin exposures are linked to enhanced hepatocellular carcinomas. Using recent advances in mass spectrometry for the detection of aflatoxin B (AFB) DNA adducts, we present data which show generation of these adducts in the kidney, albeit at ≈100-fold lower levels than in the liver of the same animal.

View Article and Find Full Text PDF

Phase separation of EEF1E1 promotes tumor stemness via PTEN/AKT-mediated DNA repair in hepatocellular carcinoma.

Cancer Lett

January 2025

Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China. Electronic address:

This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!