Characterization of the Hydrodynamics in a Miniaturized Dissolution Apparatus.

J Pharm Sci

Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer:FARMA, Universitetsparken 2, DK-2100 Copenhagen, Denmark.

Published: April 2018

The hydrodynamics of a miniaturized dissolution apparatus was characterized using computational fluid dynamics simulations and analyzed in relation to the biorelevance and robustness of measurements of drug dissolution and precipitation kinetics from supersaturated drug solutions. The effect of using 3 different agitator geometries operated at 50, 100, 150, and 200 rpm as well as different positioning of an UV probe in the vessel was systematically evaluated. The computational fluid dynamics simulations were validated using a particle streak velocimetry experiment. The results show that the choice of agitator geometry influences the hydrodynamics of the system and indicates that an off-center probe position may result in more robust measurements. Furthermore, the study shows that the agitator geometry has a significant effect on supersaturation studies due to differences in the hydrodynamic shear produced by the agitator.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2017.11.022DOI Listing

Publication Analysis

Top Keywords

hydrodynamics miniaturized
8
miniaturized dissolution
8
dissolution apparatus
8
computational fluid
8
fluid dynamics
8
dynamics simulations
8
agitator geometry
8
characterization hydrodynamics
4
apparatus hydrodynamics
4
apparatus characterized
4

Similar Publications

Electrochemical sensors: Types, applications, and the novel impacts of vibration and fluid flow for microfluidic integration.

Biosens Bioelectron

January 2025

School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, 64849, Monterrey, Mexico; Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA.

Electrochemical sensors are part of a diverse and evolving world of chemical sensors that are impacted by high demand and ongoing technological advancements. Electrochemical sensors offer benefits like cost-efficiency, short response time, ease of use, good limit of detection (LOD) and sensitivity, and ease of miniaturization while providing consistent analytical results. These sensors are employed in various fields-such as healthcare and diagnostics, environmental monitoring, and the food industry-to detect bacteria, viruses, heavy metals, pesticides, and more.

View Article and Find Full Text PDF

Background: The gut, the ureter, or the Fallopian tube all transport biological fluids by generating trains of propagating smooth muscle constrictions collectively known as peristalsis. These tubes connect body compartments at different pressures. We extend here Poiseuille's experiments on liquid flow in inert tubes to an active, mechanosensitive tube: the intestine.

View Article and Find Full Text PDF

Numerical analysis of bioconvective heat transport through Casson nanofluid over a thin needle.

J Biol Phys

November 2024

Department of Mathematics, School of Advanced Science (SAS), VIT-AP University, Amaravathi, India.

Bioconvective flows over a thin needle hold significant importance in various fields, particularly in biomedical engineering, microfluidics, and environmental science. This paper examines the bioconvective flow properties of a copper and blood-based Casson nanofluid over a thin needle, accounting for gyrotactic microorganisms in the presence of a magnetic field. The two-phase nanofluid model is applied to formulate the flow problem.

View Article and Find Full Text PDF

Polymeric nanoparticles are among the most widely used nanocarriers for delivering therapeutic molecules. However, their synthesis processes often generate undesirable impurities that could be toxic and challenging to eliminate. In this study, we compared three purification techniques - centrifugation, dialysis, and tangential flow filtration (TFF) - to evaluate their efficacy in removing residual drug, surfactant, and solvent while preserving the nanoparticles' physicochemical features (hydrodynamic size, zeta potential, polydispersity index).

View Article and Find Full Text PDF

Niosomes are employed for their improved physical properties and stability and as a controlled delivery system. However, their large-scale production and different preparation methods affect their physical properties. The microfluidic method represents a novel approach to the preparation of niosomes that enables precise control and decreases the preparation time and steps compared to alternative methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!