In vitro toxicity evaluation of estragole-containing preparations derived from Foeniculum vulgare Mill. (fennel) on HepG2 cells.

Food Chem Toxicol

Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto 5, 06122 Perugia, Italy. Electronic address:

Published: January 2018

Estragole, a common component of herbs and spices, is a wellknown genotoxic hepatocarcinogen in rodents, whereas its potential toxic effect in humans is still debated. In the European contest, one of the major sources of human exposure to this phytochemical is Foeniculum vulgare Mill. (fennel). Therefore, the aim of this study was to evaluate the in vitro toxicity of estragole in the context of two complex phytochemical mixtures derived from fennel: fennel seed powder (FSPw) and fennel seed essential oil (FSEO). The estragole-containing preparations were analysed for their ability to cause cytotoxicity, genotoxicity, apoptosis and cell cycle perturbation in the human hepatoma (HepG2) cell line. None of the tested concentrations of FSPw induced DNA damage, nor apoptosis or cell cycle perturbation. Although FSEO did not induce any genetic damage as well, it exerted marked dose-dependent apoptotic effects on HepG2 cells with a concurrent cell cycle arrest in G/M at the highest tested dose. Although prospective analyses are required to clarify the observed toxic effects of FSEO, our results support the hypothesis that the genotoxicity of estragole may be significantly reduced or null in the context of botanical mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2017.12.014DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
vitro toxicity
8
estragole-containing preparations
8
foeniculum vulgare
8
vulgare mill
8
mill fennel
8
hepg2 cells
8
fennel seed
8
apoptosis cell
8
cycle perturbation
8

Similar Publications

Background: Uterine endometrial natural killer (uNK) cells represent major leukocytes in the mid-secretory phase of the cell cycle, and their number is further increased during early pregnancy. The activating and inhibitory receptors expressed on their surface mediate various functions of uNK cells, such as cytotoxicity, cytokine production, spiral artery remodeling, and self-recognition.

Methods: This study reviewed the most recent information (PubMed database, 175 articles included) regarding the activating and inhibitory receptors on uNK cells in human females with healthy pregnancies and the evidence indicating their significance in various reproductive failures.

View Article and Find Full Text PDF

Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads.

View Article and Find Full Text PDF

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Recent advances in cancer therapy have been made possible by monoclonal antibodies, domain antibodies, antibody drug conjugates, The most impact has come from controlling cell cycle checkpoints through checkpoint inhibitors. This manuscript explores the potential of a series of novel -benzyl isatin based hydrazones (5-25), which were synthesized and evaluated as anti-breast cancer agents. The synthesized hydrazones of -benzyl isatin were screened against two cell lines, the MDA-MB-231 breast cancer cell line and the MCF-10A breast epithelial cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!