We disclose the optimization of a high throughput screening hit to yield benzothiazine and tetrahydroquinoline sulfonamides as potent RORγt inverse agonists. However, a majority of these compounds showed potent activity against pregnane X receptor (PXR) and modest activity against liver X receptor α (LXRα). Structure-based drug design (SBDD) led to the identification of benzothiazine and tetrahydroquinoline sulfonamide analogs which completely dialed out LXRα activity and were less potent at PXR. Pharmacodynamic (PD) data for compound 35 in an IL-23 induced IL-17 mouse model is discussed along with the implications of a high Y in the PXR assay for long term preclinical pharmacokinetic (PK) studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.12.006DOI Listing

Publication Analysis

Top Keywords

inverse agonists
8
structure-based drug
8
drug design
8
pregnane receptor
8
receptor pxr
8
benzothiazine tetrahydroquinoline
8
identification bicyclic
4
bicyclic hexafluoroisopropyl
4
hexafluoroisopropyl alcohol
4
alcohol sulfonamides
4

Similar Publications

Interventions for quitting vaping.

Cochrane Database Syst Rev

January 2025

Department of Health Promotion and Policy, University of Massachusetts, Amherst, MA, USA.

Rationale: There is limited guidance on the best ways to stop using nicotine-containing vapes (otherwise known as e-cigarettes) and ensure long-term abstinence, whilst minimising the risk of tobacco smoking and other unintended consequences. Treatments could include pharmacological interventions, behavioural interventions, or both.

Objectives: To conduct a living systematic review assessing the benefits and harms of interventions to help people stop vaping compared to each other or to placebo or no intervention.

View Article and Find Full Text PDF

Background: During the pandemic, there was concern that underascertainment of COVID-19 outcomes may impact treatment effect estimation in pharmacoepidemiologic studies. We assessed the impact of outcome misclassification on the association between inhaled corticosteroids (ICS) and COVID-19 hospitalisation and death in the United Kingdom during the first pandemic wave using probabilistic bias analysis (PBA).

Methods: Using data from the Clinical Practice Research Datalink Aurum, we defined a cohort with chronic obstructive pulmonary disease (COPD) on 1 March 2020.

View Article and Find Full Text PDF

Molecular mechanisms of inverse agonism via κ-opioid receptor-G protein complexes.

Nat Chem Biol

January 2025

The Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA.

Opioid receptors, a subfamily of G protein-coupled receptors (GPCRs), are key therapeutic targets. In the canonical GPCR activation model, agonist binding is required for receptor-G protein complex formation, while antagonists prevent G protein coupling. However, many GPCRs exhibit basal activity, allowing G protein association without an agonist.

View Article and Find Full Text PDF

Introduction: Histamine H receptor antagonists/inverse agonists, since the discovery of histamine H receptor (HR), are important ligands in the search for new potential drugs. The most interesting are CNS diseases as these receptors are mainly there present.

Areas Covered: The current review covers patent applications/patents that were published during the last 6 years (October 2017 - December 2023).

View Article and Find Full Text PDF

The design of dualsteric/bitopic receptor ligands as compounds capable of simultaneously interacting with both the orthosteric and an allosteric binding site has gained importance to achieve enhanced receptor specificity and minimize off-target effects. In this work, we reported the synthesis and biological evaluation of a new series of compounds, namely, the series, obtained by chemically combining the CB1R ago-positive allosteric modulators (PAM) with the cannabinoid receptors (CBRs) orthosteric agonist . Therefore, compounds were designed as dualsteric/bitopic ligands for CB1R with the aim of obtaining stronger CB1R agonists or ago-PAMs, with improved receptor subtype selectivity and reduction of central side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!