Objectives: Paenibacillus species, belonging to the family Paenibacillaceae, are able to survive for long periods under adverse environmental conditions. Several Paenibacillus species produce antimicrobial compounds and are capable of biodegradation of various contaminants; therefore, more investigations at the genomic level are necessary to improve our understanding of their ecology, genetics, as well as potential biotechnological applications.
Data Description: In the present study, we describe the draft genome sequence of Paenibacillus sp. EZ-K15 that was isolated from nitrocellulose-contaminated wastewater samples. The genome comprises 7,258,662 bp, with a G+C content of 48.6%. This whole genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession PDHM00000000. Data demonstrated here can be used by other researchers working or studying in the field of whole genome analysis and application of Paenibacillus species in biotechnological processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5727980 | PMC |
http://dx.doi.org/10.1186/s13104-017-3069-8 | DOI Listing |
BMC Plant Biol
January 2025
College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China.
Sugarcane tops silage (STS), as a source of roughage for ruminants, is rich in water-soluble carbohydrate (WSC) content, which significantly affects silage quality. Citric acid (CA) is a low-cost natural antimicrobial agent that can inhibit undesirable microbes and improve silage quality. The objectives of this study were to investigate the effects of CA on the chemical composition, fermentation quality, microbial communities, and metabolic pathways of STS with high and low WSC contents before or after aerobic exposure.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Paper Science & Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea. Electronic address:
This study investigates the application of levan- produced from Paenibacillus polymyxa SG09-12 as an antiviral agent against cucumber mosaic virus (CMV). A high-purity microbial levan was produced and purified using diafiltration. The chemical composition, structure, and functional groups of the levan were characterised using high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFFront Microbiol
January 2025
National Bureau of Agriculturally Important Microorganism, Mau, India.
Non-halophytic plants are highly susceptible to salt stress, but numerous studies have shown that halo-tolerant microorganisms can alleviate this stress by producing phytohormones and enhancing nutrient availability. This study aimed to identify and evaluate native microbial communities from salt-affected regions to boost black gram () resilience against salinity, while improving plant growth, nitrogen uptake, and nodulation in saline environments. Six soil samples were collected from a salt-affected region in eastern Uttar Pradesh, revealing high electrical conductivity (EC) and pH, along with low nutrient availability.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China. Electronic address:
The severe contamination of the plasticiser dibutyl phthalate (DBP) in agriculture soils is often accompanied by a decrease in nutrient utilisation. Though the combined application of a variety of microorganisms can simultaneously address the problems of soil contamination and nutrient deprivation, the activity and function of microorganisms can be severely inhibited by DBP, and studies on their protection under DBP contamination are almost non-existent. In this study, a compound bacterial agent KPSB was prepared by optimising with FeO-modified biochar loaded with DBP-degrading bacterium Enterobacterium sp.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan.
Developing novel nonribosomal peptides (NRPs) requires a comprehensive understanding of the enzymes involved in their biosynthesis, particularly the substrate amino acid recognition mechanisms in the adenylation (A) domain. This study focused on the A domain responsible for adenylating l-2,4-diaminobutyric acid (l-Dab) within the synthetase of polymyxin, an NRP produced by NBRC3020. To date, investigations into recombinant proteins that selectively adenylate l-Dab─exploring substrate specificity and enzymatic activity parameters─have been limited to reports on A domains found in enzymes synthesizing l-Dab homopolymers (pldA from USE31 and pddA from NBRC15115), which remain exceedingly rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!