Background: Lactulose, a synthetic disaccharide, has received increasing interest due to its role as a prebiotic, specifically proliferating Bifidobacilli and Lactobacilli and enhancing absorption of calcium and magnesium. The use of cellobiose 2-epimerase (CE) is considered an interesting alternative for industrial production of lactulose. CE reversibly converts D-glucose residues into D-mannose residues at the reducing end of unmodified β-1,4-linked oligosaccharides, including β-1,4-mannobiose, cellobiose, and lactose. Recently, a few CE 3D structure were reported, revealing mechanistic details. Using this information, we redesigned the substrate binding site of CE to extend its activity from epimerization to isomerization.

Results: Using superimposition with 3 known CE structure models, we identified 2 residues (Tyr114, Asn184) that appeared to play an important role in binding epilactose. We modified these residues, which interact with C2 of the mannose moiety, to prevent epimerization to epilactose. We found a Y114E mutation led to increased release of a by-product, lactulose, at 65 °C, while its activity was low at 37 °C. Notably, this phenomenon was observed only at high temperature and more reliably when the substrate was increased. Using Y114E, isomerization of lactose to lactulose was investigated under optimized conditions, resulting in 86.9 g/l of lactulose and 4.6 g/l of epilactose for 2 h when 200 g/l of lactose was used.

Conclusion: These results showed that the Y114E mutation increased isomerization of lactose, while decreasing the epimerization of lactose. Thus, a subtle modification of the active site pocket could extend its native activity from epimerization to isomerization without significantly impairing substrate binding. While additional studies are required to scale this to an industrial process, we demonstrated the potential of engineering this enzyme based on structural analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5726027PMC
http://dx.doi.org/10.1186/s12934-017-0841-3DOI Listing

Publication Analysis

Top Keywords

substrate binding
12
binding site
8
cellobiose 2-epimerase
8
activity epimerization
8
y114e mutation
8
isomerization lactose
8
lactulose
5
lactose
5
rational modification
4
substrate
4

Similar Publications

Molecular evidence for the role of the ovipositor of the fall armyworm: Where to lay or not to lay?

Insect Sci

January 2025

Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China.

Oviposition behavior in insects has received considerable attention, but studies have mainly focused on the antennae, neglecting the role of the ovipositor. In this study, we investigated the functional characteristics of the ovipositor in oviposition site selection by the fall armyworm (FAW) Spodoptera frugiperda, a destructive invasive pest of maize and other cereals. In oviposition choice assays females exhibited significant repellency to isothiocyanate (ITC), volatiles specific to non-preferred cruciferous plants.

View Article and Find Full Text PDF

Enzymes of the enolase superfamily (ENS) are mechanistically diverse, yet share a common partial reaction, i.e., the metal-assisted, Bro̷nsted base-catalyzed abstraction of the α-proton from a carboxylate substrate to form an enol(ate) intermediate.

View Article and Find Full Text PDF

The trimeric intracellular cation channel B (TRIC-B), encoded by TMEM38B, is a potassium (K) channel present in the endoplasmic reticulum membrane, where it counterbalances calcium (Ca) exit. Lack of TRIC-B activity causes a recessive form of the skeletal disease osteogenesis imperfecta (OI), namely OI type XIV, characterized by impaired intracellular Ca flux and defects in osteoblast (OB) differentiation and activity. Taking advantage of the OB-specific Tmem38b knockout mouse (Runx2Cre;Tmem38b; cKO), we investigated how the ion imbalance affects the osteogenetic process.

View Article and Find Full Text PDF

Beyond destruction: emerging roles of the E3 ubiquitin ligase Hakai.

Cell Mol Biol Lett

January 2025

Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), Xubias de Arriba 84, 15006, A Coruña, Spain.

Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N-methyladenosine (mA) writer complex and its impact on the methylation of RNA.

View Article and Find Full Text PDF

Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!