A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tissue imaging with in situ solid-phase extraction micro-funnel based spray ionization mass spectrometry. | LitMetric

Current imaging mass spectrometry techniques are faced with a major challenge related to ion suppression effect. Data regarding low-abundance components or low-polarity compounds cannot be normally obtained presumably because of the discrimination effect of easily ionized chemical components on desorption/ionization process. In this study, a new method was proposed to obtain images of chemical components in biological tissues or sections through in situ solid-phase extraction in sorbent mounted micro-funnel based spray ionization mass spectrometry. An imprint of a strawberry section was formed by gently pressing against a 2D array of micro-funnels. The sorbent mounted micro-funnels were then subjected to in situ single-pixel solid-phase extraction to alleviate the matrix-related ion suppression effect. The achievable spatial resolution is approximately 250 µm. The imaging of the spatial distribution of low-abundance or low-polarity chemicals in the strawberry imprint could be obtained by using a gradient elution strategy. Results demonstrated that the "not observed" remark does not necessarily indicate that a specific compound is non-existent when traditional imaging mass spectrometry techniques are used. The proposed method can be applied to conduct low-abundance chemical imaging through in situ single-pixel sample pretreatment.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1469066717731940DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
solid-phase extraction
12
imaging situ
8
situ solid-phase
8
micro-funnel based
8
based spray
8
spray ionization
8
ionization mass
8
imaging mass
8
spectrometry techniques
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!