Copper(II) complexes based on tripodal pyrazolyl amines: Synthesis, structure, magnetic properties and anticancer activity.

J Inorg Biochem

Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic. Electronic address:

Published: March 2018

The Cu(II) complexes [Cu(bpdmpz)Cl]ClO (1), [Cu(bdmpzp)Cl]ClO (2-ClO), [Cu(bdmpzp)Cl]PF (2-PF) and [Cu(tdmpza)Cl]ClO (3), bpdmpzp=[bis[((2-pyridylmethyl)-di(3,5-dimethyl-1H-pyrazolyl)methyl)]amine, bdmpzp=[bis((di(3,5-dimethyl-1H-pyrazolyl)methyl)-(2-pyridylmethyl)]amine and tdmpza=tris[di(3,5-dimethyl-1H-pyrazolyl)-methyl)]amine were synthesized and characterized by elemental analysis, magnetic and conductivity measurements, electrospray-ionization mass spectrometry, infrared and electronic spectroscopy, and X-ray crystallography. The magnetic properties of the complexes, measured at variable temperature, revealed weak antiferromagnetic intermolecular interactions. The cytotoxicity of the complexes 1, 2-ClO, 3, and 4 ([Cu(bedmpzp)Cl]PF, where bedmpzp=[bis(3,5-dimethyl-1H-pyrazol-1-yl-1-ethyl)-(2-pyridylmethyl)]amine), was investigated against four human cancer cell lines: A2780 (ovarian), A2780R (cisplatin-resistant variant), HOS (aggressive bone tumors), CaCo2 (epithelial colorectal adenocarcinoma) and on healthy human hepatocytes. The complex 4 was the most cytotoxic one, with IC=1.4μM (A2780), 8.3μM (A2780R), 4.7μM (HOS) and 10.8μM (CaCo2). The mass spectrometry-based interaction studies, involving selected sulfur-containing biomolecules and small model proteins, revealed pro-oxidant effects of complexes 1 and 4 and differences in stability of both complexes in the mixtures containing the model protein cytochrome c after 24h incubation, complex 1 formed 1:1 adduct, the formation of which was accompanied by the loss of one dimethylpyrazole pendant arm from the bpdmpz ligand, while the complex 4 composition remained intact and the complex formed both 1:1 and 1:2 adducts (cytochrome c vs. Cu(II)-complex).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2017.11.023DOI Listing

Publication Analysis

Top Keywords

magnetic properties
8
complex formed
8
complexes
5
copperii complexes
4
complexes based
4
based tripodal
4
tripodal pyrazolyl
4
pyrazolyl amines
4
amines synthesis
4
synthesis structure
4

Similar Publications

Verdazyl radical polymers for advanced organic spintronics.

Nat Commun

January 2025

Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.

Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.

View Article and Find Full Text PDF

The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.

View Article and Find Full Text PDF

Understanding the ligand field interactions in lanthanide-containing magnetic molecular complexes is of paramount importance for understanding their magnetic properties, and simple models for rationalizing their effects are much desired. In this work, the equivalence between electrostatic models, which derive their results from calculating the electrostatic interaction energy of the charge density of the 4f electrons in an electrostatic potential representing the ligands, and the common quantum mechanical effective spin Hamiltonian in the space of the ground multiplet is formulated in detail. This enables the construction of an electrostatic potential for any given ligand field Hamiltonian and discusses the effects of the ligand field interactions in terms of an interaction of a generalized 4f charge density with the electrostatic potential.

View Article and Find Full Text PDF

Specialization of the human hippocampal long axis revisited.

Proc Natl Acad Sci U S A

January 2025

Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138.

The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience.

View Article and Find Full Text PDF

Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4-  salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6-  complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!