Metallic dust layers are highly sensitive to ignition from common ignition sources, even when mixed with high percentages of inert solids. In turn, dust layer fires are a potential ignition source for dust explosions or other damaging fires. Flame spread velocity (FSV), as a potential parameter for evaluating fire hazard, was investigated for titanium powder layers mixed with inert nano TiO powder in both natural convection and in forced airflow conditions. Increased mass percentage of nano TiO powder decreased FSV of Ti powder mixtures as expected. The mixing ratio of nano TiO to fully suppress layer fires was 80% and 90% for micro and nano Ti powder, respectively. Mechanisms governing flame spread across a layer of nano Ti powder differed from those of a layer of micro Ti powder. FSV in no airflow conditions was higher than in aided airflow for micro Ti powder because conduction was the dominant heat transfer mechanism. However, FSV in no airflow was lower than in opposed airflow for nano Ti powder because convection/radiation was the dominant heat transfer mechanism. A fly fire phenomenon contributed to greater FSVs and higher fire hazard with nano Ti powder mixtures under aided airflow conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2017.12.010 | DOI Listing |
Comput Struct Biotechnol J
December 2024
Environmental Intelligence Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
Exposure of lung epithelia to aerosols is omnipresent. Chronic exposure to polluted air is a significant factor in the development of pulmonary diseases, which are among the top global causes of death, including COVID-19, chronic obstructive pulmonary disease, lung cancer, and tuberculosis. As efforts to prevent and treat lung diseases increase, the development of pulmonary drug delivery systems has become a major area of interest.
View Article and Find Full Text PDFToxicology
January 2025
National Institute of Health Doutor Ricardo Jorge, I.P (INSA), Department of Human Genetics, Lisbon, Portugal; (b)Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. Electronic address:
Understanding the potential impact of nanomaterials (NMs) on human health requires further investigation into the organ-specific nano-bio interplay at the cellular and molecular levels. We showed increased chromosomal damage in intestinal cells exposed to some of in vitro digested Titanium dioxide (TiO) NMs. The present study aimed to explore possible mechanisms linked to the uptake, epithelial barrier integrity, cellular trafficking, as well as activation of pro-inflammatory pathways, after exposure to three TiO-NMs (NM-102, NM-103, and NM-105).
View Article and Find Full Text PDFAnal Chem
January 2025
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
Microelectrodes offer exceptional sensitivity, rapid response, and versatility, making them ideal for real-time detection and monitoring applications. Photoelectrochemical (PEC) sensors have shown great value in many fields due to their high sensitivity, fast response, and ease of operation. Nevertheless, conventional PEC sensing relies on cumbersome external light sources and bulky electrodes, hindering its miniaturization and implantation, thereby limiting its application in real-time disease monitoring.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFMolecules
January 2025
Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
Water pollution, resulting from industrial effluents, agricultural runoff, and pharmaceutical residues, poses serious threats to ecosystems and human health, highlighting the need for innovative approaches to effective remediation, particularly for non-biodegradable emerging pollutants. This research work explores the influence of shape-controlled nanocrystalline titanium dioxide (TiO NC), synthesized by a simple hydrothermal method, on the photodegradation efficiency of three different classes of emerging environmental pollutants: phenol, pesticides (methomyl), and drugs (sodium diclofenac). Experiments were conducted to assess the influence of the water matrix on treatment efficiency by using ultrapure water and stormwater (basic) collected from an urban drainage system as matrices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!