Femtosecond excited-state dynamics of fullerene-C nanoparticles (nC) having a mean size of 50 nm dispersed in pure water was studied by means of femtosecond transient absorption spectroscopy. The intermolecular charge-transfer (CT) excited state in solid C was directly and firstly observed by femtosecond 350 nm and 420 nm excitations, and its intrinsic lifetime of 0.35 ps was found. The CT excited state relaxed to the locally excited S state and excimers or directly to the ground state through geminate charge recombination. We also examined the laser fluence dependence of the CT excited-state dynamics. At a high laser fluence, the mutual interactions between neighboring CT excited states were observed immediately after the excitation. The interaction disappeared through the charge recombination in the geminate CT pair or between the neighboring CT excited states with a lifetime of 0.45 ps. After that, the locally excited S state decayed with a few ps lifetime independent of the fluence. In this paper, the mechanism and dynamics of the intermolecular CT excited state generated by UV light excitation is discussed in detail.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp06746a | DOI Listing |
Sci Adv
January 2025
Department of Chemistry, Brown University, Providence, RI, USA.
Disulfide bonds are ubiquitous molecular motifs that influence the tertiary structure and biological functions of many proteins. Yet, it is well known that the disulfide bond is photolabile when exposed to ultraviolet C (UVC) radiation. The deep-UV-induced S─S bond fragmentation kinetics on very fast timescales are especially pivotal to fully understand the photostability and photodamage repair mechanisms in proteins.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Mechanical Engineering, Thuyloi University, Hanoi, Vietnam.
Road surface roughness is the cause of vehicle vibration, which is considered a system disturbance. Previous studies on suspension system control often ignore the influence of disturbances while designing the controller, leading to system performance degradation under severe vibration conditions. In this work, we propose a control method to improve active suspension performance that reduces vehicle vibration by eliminating the influence of road disturbances.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.
View Article and Find Full Text PDFChemistry
January 2025
University of Windsor Faculty of Science, Chemistry & Biochemsitry, 401 Sunset Avenue, N9B 3P4, Windsor, CANADA.
Attachment of three different heterocycles with electron donor or acceptor character to a central 1,3,5-triazine core generates readily soluble side-chain free dyes with two displaying soft crystalline mesomorphism and one displaying a nematic liquid crystal phase as confirmed by polarized optical microscopy, calorimetry, gravimetric analysis, and powder X-ray diffraction. Equally intriguing is the dyes' relatively strong electronic communication between donor and acceptor subchromophores that are meta-conjugated to one another, which is experimentally observed as a broad intramolecular charge-transfer absorption that can extend over 100 nm past the most intense absorption event and is computationally confirmed through density functional theory (DFT) evaluations of the molecular ground- and excited-state properties. This molecular design permits the preparation of dyes with panchromatic absorption not just based on the additive absorption of individual subchromophores.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
Atomically precise nanoclusters, distinguished by their unique nuclearity- and structure-dependent properties, hold great promise for applications of energy conversion and electronic transport. However, the relationship between ligands and their properties remains a mystery yet to be unrevealed. Here, the influence of ligands on the electronic structures, optical properties, excited-state dynamics, and transport behavior of ReS dimer clusters with different ligands is explored using density functional theory combined with time-domain nonadiabatic molecular dynamic simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!