Phosphorylation of Isoflavones by Bacillus subtilis BCRC 80517 May Represent Xenobiotic Metabolism.

J Agric Food Chem

Laboratory of Food Chemistry, Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.

Published: January 2018

The soy isoflavones daidzein (DAI) and genistein (GEN) have beneficial effects on human health. However, their oral bioavailability is hampered by their low aqueous solubility. Our previous study revealed two water-soluble phosphorylated conjugates of isoflavones, daidzein 7-O-phosphate and genistein 7-O-phosphate, generated via biotransformation by Bacillus subtilis BCRC80517 cultivated with isoflavones. In this study, two novel derivatives of isoflavones, daidzein 4'-O-phosphate and genistein 4'-O-phosphate, were identified by HPLC-ESI-MS/MS and H, C, and P NMR, and their biotransformation roadmaps were proposed. Primarily, isoflavone glucosides were deglycosylated and then phosphorylated predominantly into 7-O-phosphate conjugates with traces of 4'-O-phosphate conjugates. Inevitably, trace quantities of glucosides were converted into 6″-O-succinyl glucosides. GEN was more efficiently phosphorylated than DAI. Nevertheless, the presence of GEN prolonged the time until the exponential phase of cell growth, whereas the other isoflavones showed little effect on cell growth. Our findings provide new insights into the novel microbial phosphorylation of isoflavones involved in xenobiotic metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.7b04647DOI Listing

Publication Analysis

Top Keywords

isoflavones daidzein
12
phosphorylation isoflavones
8
bacillus subtilis
8
xenobiotic metabolism
8
cell growth
8
isoflavones
6
isoflavones bacillus
4
subtilis bcrc
4
bcrc 80517
4
80517 represent
4

Similar Publications

The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.

View Article and Find Full Text PDF

The Fabaceae family, particularly genus , is renowned for significant medicinal properties. These plants have been used as natural remedies to address various health issues and are rich in flavonoids. Therefore, this review aimed to provide a comprehensive overview of antibacterial activity, structure-activity relationship, especially against drug-resistance and mode of action for flavonoids isolated from .

View Article and Find Full Text PDF

A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.

View Article and Find Full Text PDF

Isoflavones are composed of phytoestrogens (genistein and daidzein), which can be metabolized by cats. These compounds can promote the maintenance of lean body mass and control food intake. These effects are desirable in neutered animals, as they are predisposed to obesity.

View Article and Find Full Text PDF

Effect of isoflavone structures on the formation of starch-isoflavone complexes: Experimental and molecular dynamics analysis.

Int J Biol Macromol

January 2025

Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:

Article Synopsis
  • Isoflavones are polyphenols that can create complexes with starch, which helps slow down starch digestion.
  • Researchers studied different isoflavones (daidzein, genistein, biochanin A, genistin, and puerarin) to understand how their structures affect starch interactions.
  • Findings indicated that daidzein and genistein for more effective complexes with starch, likely due to their smaller size and fewer hydroxyl groups, emphasizing the importance of these structural features in determining starch digestibility.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!