Objective: To evaluate artifact configuration and diameters of a magnetic resonance (MR) compatible microwave (MW) applicator using near-realtime MR-fluoroscopic sequences for percutaneous tumor ablation procedures.
Material And Methods: Two MW applicators (14 G and 16 G) were tested in an ex-vivo phantom at 1.5 T with two 3 D fluoroscopic sequences: T1-weighted spoiled Gradient Echo (GRE) and T1/T2-weighted Steady State Free Precession (SSFP) sequence. Applicator orientation to main magnetic field (B), slice orientation and phase encoding direction (PED) were systematically varied. The influence of these variables was assessed with ANOVA and post-hoc testing.
Results: The artifact was homogenous along the whole length of both antennas with all tested parameters. The tip artifact diameter of the 16 G antenna measured 6.9 ± 1.0 mm, the shaft artifact diameter 8.6 ± 1.2 mm and the Tip Location Error (TLE) was 1.5 ± 1.2 mm.The tip artifact diameter of the 14 G antenna measured 7.7 ± 1.2 mm, the shaft artifact diameter 9.6 ± 1.5 mm and TLE was 1.6 ± 1.2 mm. Orientation to B had no statistically significant influence on tip artifact diameters (16 G: p = .55; 14 G: p = .07) or TLE (16 G: p = .93; 14 G: p = .26). GRE sequences slightly overestimated the antenna length with TLE(16 G) = 2.6 ± 0.5 mm and TLE(14 G) = 2.7 ± 0.7 mm.
Conclusions: The MR-compatible MW applicator's artifact seems adequate with an acceptable TLE for safe applicator positioning during near-realtime fluoroscopic MR-guidance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13645706.2017.1414062 | DOI Listing |
Sensors (Basel)
December 2024
Ophthalmic Instrumentation Development Lab, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Wilmer 233, 600 N. Wolfe St., Baltimore, MD 21287, USA.
Signal amplitudes obtained from retinal scanning depend on numerous factors. Working with polarized light to interrogate the retina, large parts of which are birefringent, is even more prone to artifacts. This article demonstrates the necessity of using normalization when working with retinal birefringence scanning signals in polarization-sensitive ophthalmic instruments.
View Article and Find Full Text PDFCells
December 2024
University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia.
Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density () and hydrodynamic diameter () of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS).
View Article and Find Full Text PDFInvest Radiol
January 2025
From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).
Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Physics "A. Pontremoli", University of Milan & INFN sez. Milano, Milano, Italy. Electronic address:
Purpose: This work aims at investigating, via in-silico evaluations, the noise properties of an innovative scanning geometry in cone-beam CT (CBCT): eCT. This scanning geometry substitutes each of the projections in CBCT with a series of collimated projections acquired over an oscillating scanning trajectory. The analysis focused on the impact of the number of the projections per period (PP) on the noise characteristics.
View Article and Find Full Text PDFClin Radiol
November 2024
Department of Radiology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
Purpose: To quantitatively and qualitatively compare the magnitude of metal total hip arthroplasty-induced imaging artifacts in vivo between 1.5T and 0.55T MRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!