Transcriptome analysis and anaerobic C -dicarboxylate transport in Actinobacillus succinogenes.

Microbiologyopen

Department of Life Science, and Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul, Korea.

Published: June 2018

A global transcriptome analysis of the natural succinate producer Actinobacillus succinogenes revealed that 353 genes were differentially expressed when grown on various carbon and energy sources, which were categorized into six functional groups. We then analyzed the expression pattern of 37 potential C -dicarboxylate transporters in detail. A total of six transporters were considered potential fumarate transporters: three transporters, Asuc_1999 (Dcu), Asuc_0304 (DASS), and Asuc_0270-0273 (TRAP), were constitutively expressed, whereas three others, Asuc_1568 (DASS), Asuc_1482 (DASS), and Asuc_0142 (Dcu), were differentially expressed during growth on fumarate. Transport assays under anaerobic conditions with [ C]fumarate and [ C]succinate were performed to experimentally verify that A. succinogenes possesses multiple C -dicarboxlayte transport systems with different substrate affinities. Upon uptake of 5 mmol/L fumarate, the systems had substrate specificity for fumarate, oxaloacetate, and malate, but not for succinate. Uptake was optimal at pH 7, and was dependent on both proton and sodium gradients. Asuc_1999 was suspected to be a major C -dicarboxylate transporter because of its noticeably high and constitutive expression. An Asuc_1999 deletion (∆1999) decreased fumarate uptake significantly at approximately 5 mmol/L fumarate, which was complemented by the introduction of Asuc_1999. Asuc_1999 expressed in Escherichia coli catalyzed fumarate uptake at a level of 21.6 μmol·gDW ·min . These results suggest that C -dicarboxylate transport in A. succinogenes is mediated by multiple transporters, which transport various types and concentrations of C -dicarboxylates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6011838PMC
http://dx.doi.org/10.1002/mbo3.565DOI Listing

Publication Analysis

Top Keywords

transcriptome analysis
8
-dicarboxylate transport
8
actinobacillus succinogenes
8
differentially expressed
8
systems substrate
8
uptake 5 mmol/l
8
5 mmol/l fumarate
8
fumarate uptake
8
fumarate
7
transport
5

Similar Publications

Rice is a crucial staple food for over half the global population, and viral infections pose significant threats to rice yields. This study focuses on the Rice Stripe Virus (RSV), which is known to drastically reduce rice productivity. We employed RNA-seq and ribosome profiling to analyze the transcriptional and translational responses of RSV-infected rice seedlings.

View Article and Find Full Text PDF

Identification and Molecular Characterization of Telosma Mosaic Virus (TelMV) and East Asian Passiflora Virus (EAPV) from Patchouli in China.

Viruses

November 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Patchouli is a valuable medicinal herb and cash crop in China, but viral infections cause significant yield losses. This study identified six viruses in patchouli transcriptome data, including the first-ever detection of East Asian Passiflora Virus (EAPV) in patchouli. RT-PCR validated three viruses from diseased patchouli plants in Haikou, China: telosma tosaic virus (TelMV), broad bean wilt virus-2 (BBWV-2), and pogostemom alphacytorhabdovirus 1 (PogACRV1_Pog).

View Article and Find Full Text PDF

(OBVs) represent a diverse group of RNA viruses, encompassing a progressively increasing number of arboviruses that cause disease in both humans and livestock. Yet, studies investigating these viruses remain scarce despite the critical importance of such knowledge for assessing their zoonotic potential. In this study, we conducted an evaluation of the early immune response against the understudied Batai virus (BATV), as well as the influence of reassortment with the Bunyamwera virus (BUNV) on this response.

View Article and Find Full Text PDF

Isolation and Characterization of a Lytic Phage PaTJ Against .

Viruses

November 2024

Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510000, China.

is a major global threat to human health, and phage therapy has emerged as a promising strategy for treating infections caused by multidrug-resistant pathogens. In this study, we isolated and characterized a lytic phage, PaTJ, from wastewater. PaTJ belongs to the phage family , and is featured by short latency (30 min) and large burst size (10 PFU per infected cell).

View Article and Find Full Text PDF

A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity.

Pharmaceutics

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.

Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.

Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!