Microalgae can effectively absorb nitrogen (N) and phosphorus (P) in wastewater, while growth characteristics can be affected by such nutrients. The influences of the N and P concentration on growth, biomass yield, protein yield, and cell ultrastructure of Chlamydomonas reinhardtii (C. reinhardtii) were investigated in this study. The results showed that, in the optimum conditions (24-72 mg/L for N and 4.5-13.5 mg/L for P), the final biomass and protein content of C. reinhardtii could reach maximum value, and the cell organelles (chloroplast, mitochondria,etc.) showed good structures with larger chloroplasts, and more and neater thylakoids. However, if the concentration of nutrients was much higher or lower than the optimal value, it would cause adverse effects on the growth of C. reinhardtii, especially in high nitrogen (1000 mg/L) and low phosphorus (0.5 mg/L) conditions. Under these extreme conditions, the ultrastructure of the cells was also damaged significantly as follows: the majority of the organelles were deformed, the chloroplast membrane became shrunken, and the mitochondria became swollen, even partial disintegrated (differing slightly under high-N and low-P conditions); furthermore, it is found that C. reinhardtii was more sensitive to low-P stress. On the basis of these results, our findings have general implications in the application of wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-017-0931-0 | DOI Listing |
Plant Cell Environ
January 2025
Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.
View Article and Find Full Text PDFPlant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA.
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.
Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!