The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult rat spinal cord injury (SCI). After completely cutting and removing a 5-mm adult rat T8 segment, a sodium hyaluronate-CNTF scaffold was implanted into the lesion area. Dil tracing and immunofluorescence staining were used to observe the proliferation, differentiation and integration of neural stem cells (NSCs) after SCI. A planar multielectrode dish system (MED64) was used to test the electrophysiological characteristics of the regenerated neural network in the lesioned area. Electrophysiology and behavior evaluation were used to evaluate functional recovery of paraplegic rat hindlimbs. The Dil tracing and immunofluorescence results suggest that the sodium hyaluronate-CNTF scaffold could activate the NSCs originating from the spinal cord ependymal, and facilitate their migration to the lesion area and differentiation into mature neurons, which were capable of forming synaptic contact and receiving glutamatergic excitatory synaptic input. The MED64 results suggest that functional synapsis could be established among regenerated neurons as well as between regenerated neurons and the host tissue, which has been evidenced to be glutamatergic excitatory synapsis. The electrophysiology and behavior evaluation results indicate that the paraplegic rats' sensory and motor functions were recovered in some degree. Collectively, this study may shed light on paraplegia treatment in clinics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-017-9217-2DOI Listing

Publication Analysis

Top Keywords

sodium hyaluronate-cntf
16
adult rat
12
spinal cord
12
neural network
12
rat spinal
8
cord injury
8
facilitating neural
8
hyaluronate-cntf scaffold
8
lesion area
8
dil tracing
8

Similar Publications

The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult rat spinal cord injury (SCI). After completely cutting and removing a 5-mm adult rat T8 segment, a sodium hyaluronate-CNTF scaffold was implanted into the lesion area. Dil tracing and immunofluorescence staining were used to observe the proliferation, differentiation and integration of neural stem cells (NSCs) after SCI.

View Article and Find Full Text PDF

Objectives: Currently, effective therapeutic strategy for spinal cord injury (SCI) is not clinically available. To establish a better method that may help repair the injured spinal cord, sodium hyaluronate-ciliary neurotrophic factor (CNTF) gelatinous particles were generated.

Methods: A segment of spinal cord tissue was excised to form a 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!