Uranium alloys containing a low concentration of titanium have received wide attention due to their greatly enhanced corrosion resistance and outstanding mechanical performances. Herein, we investigated the effect of macroscopic defects on the corrosion behavior of U-0.79 wt%Ti (denoted as U-Ti) alloy in 0.01 M NaCl solution using traditional electrochemical testing technologies and a novel scanning electrochemical composite probe (SECP). The results demonstrate that pitting corrosion occurs rapidly on the alloy surface due to macroscopic defects. Moreover, macroscopic defects led to a decrease in corrosion potential and polarization resistance, and an increase in corrosion current density. Furthermore, the potential and pH value distributions were detected in the same region using the composite probe. The results show that the region around the macroscopic defects become corrosion-active positions and the potential difference (vs. the average potential of the alloy surface) in this area is significantly higher than that at positions without macroscopic defects, while the opposite was observed for the pH value distribution. In addition, the distribution of the vertical direction (Z) potential at the active point was clearly different from that at the inactive point. A possible reason for this could lie in the difference in the electric field distribution and electrode reaction type between the active point and inactive point on the alloy surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp06697j | DOI Listing |
Biofabrication
January 2025
Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wroclaw, 50-372, POLAND.
The objective of this review is to deepen understanding and emphasize scientific and technological progress in the transformation of crop by-products into bio-based dental materials. Amid heightened environmental sustainability consciousness, various sectors including dentistry have achieved novel advancements by utilizing bio-based materials from crop by-products for dental restorations. This paper provides a thorough review of the extraction, processing, and application of natural polymers, biopolymers, and bio-based mixtures at both the macroscopic and nanoscopic scales, with a focus on their contextualization within dental practices.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Applied Mechanics, FEMTO-ST Institute, CNRS, Université de Franche-Comté, 25000 Besançon, France.
Hydrogen storage in intermetallic compounds, known as solid-state storage, relies on a phase change by the metal alloy. This phenomenon causes a violent change in volume at the crystalline scale, inducing a change of volume for the millimetric particles and, with time, important stresses on the tanks. It is thus necessary to know the mechanical behavior of the material to report these phenomena and improve the tanks' reliability.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy.
Multi-stable behavior at the microscopic length-scale is fundamental for phase transformation phenomena observed in many materials. These phenomena can be driven not only by external mechanical forces but are also crucially influenced by disorder and thermal fluctuations. Disorder, arising from structural defects or fluctuations in external stimuli, disrupts the homogeneity of the material and can significantly alter the system's response, often leading to the suppression of cooperativity in the phase transition.
View Article and Find Full Text PDFBackground: Alport syndrome (AS) is a multifaceted condition that primarily affects the basement membranes of the kidneys, ears, and eyes. AS is considered the second most common cause of hereditary renal failure, exhibiting varied clinical manifestations across different lifespans. The aim of this study is to investigate the clinical features and genetic profile of AS and to elucidate the genotype-phenotype correlation of AS.
View Article and Find Full Text PDFCurr J Neurol
April 2024
Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Carpal tunnel syndrome (CTS) is a common peripheral nerve entrapment disorder that is diagnosed using clinical signs and symptoms and confirmed via nerve conduction studies (NCSs). While NCS is a semi-invasive procedure, magnetic resonance imaging (MRI) is a non-invasive diagnostic tool that detects macroscopic nerve abnormalities and evaluates a patient's surgical or medication treatment options. This study assessed magnetic resonance neurography (MRN)'s diagnostic and grading value by comparing it to electrodiagnostic studies in patients with CTS and healthy individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!