The endoplasmic reticulum (ER) is an important organelle responsible for the folding and sorting of proteins. Disturbances in ER homeostasis can trigger a cellular response known as the unfolded protein response, leading to accumulation of unfolded or misfolded proteins in the ER lumen called ER stress. A number of recent studies suggest that mutations in autism spectrum disorder (ASD)-susceptible synaptic genes induce ER stress. However, it is not known whether ER stress-related genes are altered in the brain of ASD subjects. In the present study, we investigated the mRNA expression of ER stress-related genes (ATF4, ATF6, PERK, XBP1, sXBP1, CHOP, and IRE1) in the postmortem middle frontal gyrus of ASD and control subjects. RT-PCR analysis showed significant increases in the mRNA levels of ATF4, ATF6, PERK, XBP1, CHOP, and IRE1 in the middle frontal gyrus of ASD subjects. In addition, we found a significant positive association of mRNA levels of ER stress genes with the diagnostic score for stereotyped behavior in ASD subjects. These results, for the first time, provide the evidence of the dysregulation of ER stress genes in the brain of subjects with ASD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701271PMC
http://dx.doi.org/10.1159/000477212DOI Listing

Publication Analysis

Top Keywords

stress-related genes
12
middle frontal
12
asd subjects
12
endoplasmic reticulum
8
autism spectrum
8
spectrum disorder
8
atf4 atf6
8
atf6 perk
8
perk xbp1
8
chop ire1
8

Similar Publications

Background: Chordoma, characterized as a slow growing yet locally invasive and destructive bone tumor mainly emerging in the sacrum and clivus, presents a unique challenge due to its rarity, hampering the development of effective treatment strategies. Comprehensive understanding of tumor biology is crucial to suggest novel treatment modalities. Reactive oxygen species (ROS), a family of chemically reactive and unstable oxygen derivatives, are controlled by an intracellular antioxidant system to maintain homeostasis.

View Article and Find Full Text PDF

Heat stress (HS) induced by global warming is a real welfare, productivity, and economic burden of cattle production. However, some cattle breeds have superior physiological adaptive traits to others, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the expression profile of stress-related molecular signatures in the blood of thermosensitive Angus () and thermotolerant Brahman () cattle breeds managed without (CON) or with growth-promoting technology (TRT) during the summer (April-October, 2023) season in Colorado, US.

View Article and Find Full Text PDF

Bridging animal models and humans: neuroimaging as intermediate phenotypes linking genetic or stress factors to anhedonia.

BMC Med

January 2025

Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 264 Guangzhou Street, Nanjing, China.

Background: Intermediate phenotypes, such as characteristic neuroimaging patterns, offer unique insights into the genetic and stress-related underpinnings of neuropsychiatric disorders like depression. This study aimed to identify neuroimaging intermediate phenotypes associated with depression, bridging etiological factors to behavioral manifestations and connecting insights from animal models to diverse clinical populations.

Methods: We analyzed datasets from both rodents and humans.

View Article and Find Full Text PDF

Background: Macranthoside B (MB) is a saponin compound extracted from hon-eysuckle that has been reported to exhibit significant medicinal values, particularly anti-tumor activities. This study aimed to evaluate the anticancer efficacy of MB in treating adenocarci-noma of the esophagogastric junction (AEG) and elucidate its underlying mechanisms.

Methods: Three AEG cell lines and normal gastric epithelial cells were used to assess the an-ticancer activity of MB in vitro.

View Article and Find Full Text PDF

Diurnal and daily fluctuations in levels of the urinary oxidative stress marker 8-hydroxyguanosine in spot urine samples.

Genes Environ

January 2025

Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan.

Background: Urinary 8-hydroxyguanosine (8-OHGuo) levels serve as a biomarker for oxidative stress and hydroxyl radical-induced RNA damage. Evaluating the diurnal and daily fluctuations in urinary 8-OHGuo excretion levels is essential for understanding its implications. However, research in this area remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!