Extracellular Vesicles from Adipose-Derived Mesenchymal Stem Cells Downregulate Senescence Features in Osteoarthritic Osteoblasts.

Oxid Med Cell Longev

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Av. Vicent A. Estellés s/n, Burjasot, 46100 Valencia, Spain.

Published: July 2018

AI Article Synopsis

  • Osteoarthritis (OA) involves damage to all joint tissues, leading to pain and disability, with bone metabolism dysregulation being a contributing factor.
  • Adipose-derived mesenchymal stem cells (ASC) show promise in OA treatment due to their anti-inflammatory properties and ability to protect cartilage from damage.
  • This study investigates how ASC's conditioned medium and extracellular vesicles can reduce inflammation and cellular aging in osteoblasts under stress, suggesting a protective role for ASC products in restoring normal cell function in OA.

Article Abstract

Osteoarthritis (OA) affects all articular tissues leading to pain and disability. The dysregulation of bone metabolism may contribute to the progression of this condition. Adipose-derived mesenchymal stem cells (ASC) are attractive candidates in the search of novel strategies for OA treatment and exert anti-inflammatory and cytoprotective effects on cartilage. Chronic inflammation in OA is a relevant factor in the development of cellular senescence and joint degradation. In this study, we extend our previous observations of ASC paracrine effects to study the influence of conditioned medium and extracellular vesicles from ASC on senescence induced by inflammatory stress in OA osteoblasts. Our results in cells stimulated with interleukin- (IL-) 1 indicate that conditioned medium, microvesicles, and exosomes from ASC downregulate senescence-associated -galactosidase activity and the accumulation of H2AX foci. In addition, they reduced the production of inflammatory mediators, with the highest effect on IL-6 and prostaglandin E. The control of mitochondrial membrane alterations and oxidative stress may provide a mechanism for the protective effects of ASC in OA osteoblasts. We have also shown that microvesicles and exosomes mediate the paracrine effects of ASC. Our study suggests that correction of abnormal osteoblast metabolism by ASC products may contribute to their protective effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5694590PMC
http://dx.doi.org/10.1155/2017/7197598DOI Listing

Publication Analysis

Top Keywords

extracellular vesicles
8
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
paracrine effects
8
conditioned medium
8
microvesicles exosomes
8
protective effects
8
effects asc
8
asc
7

Similar Publications

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease.

Dev Cell

December 2024

State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China. Electronic address:

The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown.

View Article and Find Full Text PDF

MiRNAs and extracellular vesicles in psychiatry: Potential biomarkers, therapeutic advances, and animal models.

Eur Neuropsychopharmacol

January 2025

Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; Systems Neuropharmacology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain; Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, 28029 Madrid, Spain. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!