Mixed lineage kinase domain-like (MLKL)-dependent necroptosis is thought to be implicated in the death of mycobacteria-infected macrophages, reportedly allowing escape and dissemination of the microorganism. Given the consequent interest in developing inhibitors of necroptosis to treat Mycobacterium tuberculosis (Mtb) infection, we used human pharmacologic and murine genetic models to definitively establish the pathophysiological role of necroptosis in Mtb infection. We observed that Mtb infection of macrophages remodeled the intracellular signaling landscape by upregulating MLKL, TNFR1, and ZBP1, whilst downregulating cIAP1, thereby establishing a strong pro-necroptotic milieu. However, blocking necroptosis either by deleting Mlkl or inhibiting RIPK1 had no effect on the survival of infected human or murine macrophages. Consistent with this, MLKL-deficiency or treatment of humanized mice with the RIPK1 inhibitor Nec-1s did not impact on disease outcomes in vivo, with mice displaying lung histopathology and bacterial burdens indistinguishable from controls. Therefore, although the necroptotic pathway is primed by Mtb infection, macrophage necroptosis is ultimately restricted to mitigate disease pathogenesis. We identified cFLIP upregulation that may promote caspase 8-mediated degradation of CYLD, and other necrosome components, as a possible mechanism abrogating Mtb's capacity to coopt necroptotic signaling. Variability in the capacity of these mechanisms to interfere with necroptosis may influence disease severity and could explain the heterogeneity of Mtb infection and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943269PMC
http://dx.doi.org/10.1038/s41418-017-0031-1DOI Listing

Publication Analysis

Top Keywords

mtb infection
20
necroptotic signaling
8
necroptosis
6
disease
5
mtb
5
infection
5
signaling primed
4
primed mycobacterium
4
mycobacterium tuberculosis-infected
4
macrophages
4

Similar Publications

Methods and Models for Studying in Respiratory Infections.

Int J Mol Sci

December 2024

Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy.

Respiratory infections, including tuberculosis, constitute a major global health challenge. Tuberculosis (TB), caused by (Mtb), remains one of the leading causes of mortality worldwide. The disease's complexity is attributed to Mtb's capacity to persist in latent states, evade host immune defenses, and develop resistance to antimicrobial treatments, posing significant challenges for diagnosis and therapy.

View Article and Find Full Text PDF

Human challenge experiments could accelerate tuberculosis vaccine development. This requires a safe Mycobacterium tuberculosis (Mtb) strain that can both replicate in the host and be reliably cleared. Here we genetically engineered Mtb strains encoding up to three kill switches: two mycobacteriophage lysin operons negatively regulated by tetracycline and a degron domain-NadE fusion, which induces ClpC1-dependent degradation of the essential enzyme NadE, negatively regulated by trimethoprim.

View Article and Find Full Text PDF

Introduction: Tuberculosis (TB) is the deadliest infectious disease worldwide and novel vaccines are urgently needed. HLA-E is a virtually monomorphic antigen presentation molecule and is not downregulated upon HIV co-infection. HLA-E restricted specific CD8 T cells are present in the circulation of individuals with active TB (aTB) and infection (TBI) with or without HIV co-infection, making HLA-E restricted T cells interesting vaccination targets for TB.

View Article and Find Full Text PDF

Background: Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), remains a global health crisis, especially in sub-Saharan Africa, where high human immune virus (HIV) prevalence exacerbates the problem. The co-infection of TB and HIV creates a deadly combination, increasing susceptibility and complicating disease progression and treatment. Ethiopia, classified as a high-burden country, faces significant challenges despite efforts to reduce co-infection rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!