infective endocarditis (IE) is a fast-progressing and tissue-destructive infection of the cardiac endothelium. The superantigens (SAgs) toxic shock syndrome toxin 1 (TSST-1), staphylococcal enterotoxin C (SEC), and the toxins encoded by the enterotoxin gene cluster () play a novel and essential role in the etiology of IE. Recent studies indicate that SAgs act at the infection site to cause tissue pathology and promote vegetation growth. The underlying mechanism of SAg involvement has not been clearly defined. In SAg-mediated responses, immune cell priming is considered a primary triggering event leading to endothelial cell activation and altered function. Utilizing immortalized human aortic endothelial cells (iHAECs), we demonstrated that TSST-1 directly activates iHAECs, as documented by upregulation of vascular and intercellular adhesion molecules (VCAM-1 and ICAM-1). TSST-1-mediated activation results in increased monolayer permeability and defects in vascular reendothelialization. Yet stimulation of iHAECs with TSST-1 fails to induce interleukin-8 (IL-8) and IL-6 production. Furthermore, simultaneous stimulation of iHAECs with TSST-1 and lipopolysaccharide (LPS) inhibits LPS-mediated IL-8 and IL-6 secretion, even after pretreatment with either of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and IL-1β. IL-8 suppression is not mediated by TSST-1 binding to its canonical receptor major histocompatibility complex class II (MHC-II), supporting current evidence for a nonhematopoietic interacting site on SAgs. Together, the data suggest that TSST-1 differentially regulates cell-bound and secreted markers of endothelial cell activation that may result in dysregulated innate immune responses during IE. Endothelial changes resulting from the action of SAgs can therefore directly contribute to the aggressive nature of IE and development of life-threatening complications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820935PMC
http://dx.doi.org/10.1128/IAI.00848-17DOI Listing

Publication Analysis

Top Keywords

endothelial cell
12
toxic shock
8
shock syndrome
8
syndrome toxin
8
human aortic
8
aortic endothelial
8
cell activation
8
stimulation ihaecs
8
ihaecs tsst-1
8
il-8 il-6
8

Similar Publications

IFN-γ reprograms cardiac microvascular endothelial cells to mediate doxorubicin transport and influences the sensitivity of mice to doxorubicin-induced cardiotoxicity.

Exp Mol Med

January 2025

Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, P. R. China.

Doxorubicin (DOX) is a first-line chemotherapy agent known for its cardiac toxicity. DOX-induced cardiotoxicity (DIC) severely limits the use for treating malignant tumors and is associated with a poor prognosis. The sensitivity to DIC varies among patients, but the precise mechanisms remain elusive.

View Article and Find Full Text PDF

Background: ACKR2 is an atypical chemokine receptor that plays a significant role in regulating inflammation by binding to inflammatory CC chemokines and facilitating their degradation. Previous findings suggest that the genetic absence of ACKR2 leads to heightened tumor growth in inflammation-driven models. Conversely, mice lacking ACKR2 exhibit protection against lung metastasis in melanoma and breast cancer models.

View Article and Find Full Text PDF

Nuclear podosomes regulates cellular migration in Tau and Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India. Electronic address:

The neuronal cytoskeleton has remained a less explored area of research in establishing neuroprotection. HDAC6 has been studied with respect to many neurodegenerative diseases, especially AD. It exhibits the ability to interact with various cytoskeletal proteins and to promote migration in cells.

View Article and Find Full Text PDF

Thermoresponsive dual-network chitosan-based hydrogels with demineralized bone matrix for controlled release of rhBMP9 in the treatment of femoral head osteonecrosis.

Carbohydr Polym

March 2025

Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China. Electronic address:

In an effort to mitigate or reverse the pathological progression of early-stage osteonecrosis of the femoral head (ONFH), this study employed a promising strategy that involves the sustained delivery of osteogenic factors to augment core decompression, facilitated by the use of composite hydrogels. Specifically, a hydrogel was synthesized by blending chitosan, Pluronic F-127, and tripolyphosphate, utilizing both ionic bonding and copolymer micelle cross-linking techniques. This hydrogel demonstrated exceptional biocompatibility, temperature responsiveness, pH-dependent biodegradation, and controlled release properties.

View Article and Find Full Text PDF

Tannic acid-modified FK506-loaded nanoparticles targeting lymph nodes for acute heart transplant rejection treatment.

Int J Pharm

January 2025

Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China; Clinical Research Center for Medical Imaging in Hubei Province, Wuhan 430022 China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022 China. Electronic address:

Significant efforts have been made to deliver immunosuppressants-loaded nanoparticles (NPs) to lymph nodes (LNs) to mitigate transplant rejection. However, conventional administration techniques encounter challenges in enhancing the retention of NPs in the LNs. Attributing the strong affinity of tannic acid (TA) molecules to the elastin of LN conduits, we developed a novel formulation of NPs encapsulating Tacrolimus (FK506), and subsequently modified with TA to produce TA-FNP with a final diameter of approximately 86.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!