Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles (liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and the hydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have been widely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of the polymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic copolymers polyethylene glycol-poly-DL-lactic acid (PEG-PLA) and polyethylene glycol-poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigated acoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acoustically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibited strong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental and subharmonic, respectively, at 5-MHz excitation from 20 µg/mL polymers in solution). Unlike echogenic liposomes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrast agents, which was also confirmed by clinical ultrasound imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2017.10.011 | DOI Listing |
Proc Natl Acad Sci U S A
January 2023
Department of Applied Physics, Aalto University School of Science, Espoo, Aalto FI-00076, Finland.
Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro--butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from ). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes.
View Article and Find Full Text PDFBiomacromolecules
October 2018
Department of Mechanical and Aerospace Engineering , The George Washington University, Washington, D.C. 20052 , United States.
Chemotherapeutic agents for treating cancers show considerable side effects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport and subsequently release the encapsulated anticancer drugs within the nuclei of pancreatic cancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N-polyethylene glycol (PEG)-polylactic acid (PLA) copolymer employing the Cu catalyzed "Click" reaction.
View Article and Find Full Text PDFChemistry
August 2018
Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105, USA.
Hypoxia in solid tumors facilitates the progression of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anticancer drugs to solid tumors.
View Article and Find Full Text PDFACS Nano
April 2018
Guangdong Provincial Key Lab of Liver Disease and Department of Medical Ultrasonic , The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630 , China.
Among medical imaging modalities available in the clinic, ultrasonography is the most convenient, inexpensive, ionizing-radiation-free, and most common. Micrometer-size perfluorocarbon bubbles have been used as efficient contrast for intravascular ultrasonography, but they are too big for tumor penetration. Nanodroplets (250-1000 nm) encapsulating both perfluorocarbon and drug have been used as an ultrasound-triggered release drug delivery platform against cancer, but they are generally not useful as a tumor imaging agent.
View Article and Find Full Text PDFUltrasound Med Biol
February 2018
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC. Electronic address:
Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles (liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and the hydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have been widely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of the polymersomes remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!