Background: Before primary oral tumors are treated, various prophylactic procedures that require tissue repair are often necessary (e.g. biopsies, tooth extractions, radiation, and tracheotomies). Wound healing and tumor growth harness similar immune/inflammatory mechanisms. Our previous work indicates that tumors impair wound healing, although the extent to which tissue repair conversely influences tumor growth is poorly understood. Here, we test the hypothesis that dermal wound healing exacerbates primary tumor growth and influences tumor immunobiology.
Materials And Methods: Female, immunocompetent mice were inoculated subcutaneously with murine oral cancer cells (AT-84) to induce flank tumors. Half of the mice received dermal excisional wounds (4 × 3.5 mm diameter) on their dorsum 16 days later, whereas the skin of controls remained intact. Tumor and blood tissues were harvested 1 and 5 days post wounding, and tumor myeloid cell populations and inflammatory gene expression were measured. Circulating myeloid cells, cytokines, and corticosterone were also quantified.
Results: Wounding increased tumor mass, early tumor infiltration of macrophages, and tumor inflammatory gene expression. While wounding attenuated tumor growth-induced increases in circulating myeloid cells, no effects of wounding on circulating cytokine/endocrine measures were observed.
Conclusions: These results indicate that modest skin immune/inflammatory processes can enhance distal tumor growth and alter innate tumor immunity. The implication for this work is that, in the presence of a tumor, the benefits of tissue-damaging procedures that occur clinically must be weighed against the potential consequences for tumor biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5788460 | PMC |
http://dx.doi.org/10.1016/j.jss.2017.09.016 | DOI Listing |
Ther Adv Med Oncol
January 2025
Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland.
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Tianjin Chest Hospital, Tianjin University, Tianjin, China.
Background: Macrophages play a dual role in the tumor microenvironment(TME), capable of secreting pro-inflammatory factors to combat tumors while also promoting tumor growth through angiogenesis and immune suppression. This study aims to explore the characteristics of macrophages in lung adenocarcinoma (LUAD) and establish a prognostic model based on macrophage-related genes.
Method: We performed scRNA-seq analysis to investigate macrophage heterogeneity and their potential pseudotime evolutionary processes.
Front Immunol
January 2025
The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China.
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Minimally Invasive Spine Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
Introduction: Osteosarcoma (OS), a prevalent metastatic cancer among young individuals, is associated with a grim prognosis. Long non-coding RNAs (lncRNAs), including C1QTNF1-AS1, are pivotal regulators of cancer cell proliferation and motility. As an oncogene, C1QTNF1-AS1 is implicated in various tumor types, such as colorectal, pancreatic, hepatocellular carcinomas, and OS.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
Liver cancer is a leading cause of cancer-related deaths worldwide, highlighting the need for innovative approaches to understand its complex biology and develop effective treatments. While traditional animal models have played a vital role in liver cancer research, ethical concerns and the demand for more human-relevant systems have driven the development of advanced models. Spheroids and organoids have emerged as powerful tools due to their ability to replicate tumor microenvironment and facilitate preclinical drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!