AI Article Synopsis

  • Lytic polysaccharide monooxygenases (LPMOs) are enzymes produced by microorganisms that help break down tough polysaccharides.
  • Heterobasidion irregulare, a fungus that decays wood in conifers, has 10 potential LPMOs encoded in its genome.
  • The study characterized two specific LPMOs from this fungus, revealing that they each target different parts of plant cell walls and work together in the decay process.

Article Abstract

Lytic polysaccharide monooxygenases (LPMO) are important redox enzymes produced by microorganisms for the degradation of recalcitrant natural polysaccharides. Heterobasidion irregulare is a white-rot phytopathogenic fungus that causes wood decay in conifers. The genome of this fungus encodes 10 putative Auxiliary Activity family 9 (AA9) LPMOs. We describe the first biochemical characterization of H. irregulare LPMOs through heterologous expression of two CBM-containing LPMOs from this fungus (HiLPMO9H, HiLPMO9I) in Pichia pastoris. The oxidization preferences and substrate specificities of these two enzymes were determined. The two LPMOs were shown to cleave different carbohydrate components of plant cell walls. HiLPMO9H was active on cellulose and oxidized the substrate at the C1 carbon of the pyranose ring at β-1,4-glycosidic linkages, whereas HiLPMO9I cleaved cellulose with strict oxidization at the C4 carbon of glucose unit at internal bonds, and also showed activity against glucomannan. We propose that the two LPMOs play different roles in the plant-cell-wall degrading system of H. irregulare for degradation of softwood and that the lignocellulose degradation mediated by this white-rot fungus may require collective efforts from multi-types of LPMOs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724852PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189479PLOS

Publication Analysis

Top Keywords

lytic polysaccharide
8
polysaccharide monooxygenases
8
white-rot fungus
8
heterobasidion irregulare
8
lignocellulose degradation
8
lpmos
6
fungus
5
biochemical studies
4
studies lytic
4
monooxygenases white-rot
4

Similar Publications

Elucidating the synergistic action between sulfonated lignin and lytic polysaccharide monooxygenases (LPMOs) in enhancing cellulose hydrolysis.

Int J Biol Macromol

January 2025

Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, University of British Columbia, 2424 Main Mal, Vancouver V6T 1Z4, Canada. Electronic address:

Modern enzyme cocktails often include lytic polysaccharide monooxygenase (LPMO) as an accessory enzyme that enhances cellulose accessibility during hydrolysis. Although lignin is known to generally impede cellulose hydrolysis, previous research has demonstrated lignin's potential to act as a co-factor in boosting LPMO activity and that the negative impact of lignin limiting enzyme accessibility can be mitigated by sulfonated. When sulphonated lignin was added to microcrystalline cellulose (Avicel) the activity of the lytic polysaccharide monooxygenase (LPMO) was boosted, as determined when using a quartz crystal microbalance and dissipation monitoring (QCM-D).

View Article and Find Full Text PDF

Chitosan nano-formulation enhances stability and bactericidal activity of the lytic phage HK6.

BMC Biotechnol

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.

Background: Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.

Result: Encapsulation significantly improves stability, efficacy, and delivery of phages.

View Article and Find Full Text PDF

Aims: In this study, we report the use of two novel lytic polyvalent phages as a cocktail in in planta assays and their efficacy in the control of bacterial halo blight (BHB) caused by Pseudomonas coronafaciens pv. garcae (Pcg) in coffee plants.

Methods And Results: Phages were isolated from samples of coffee plant leaves collected at two different locations in Brazil.

View Article and Find Full Text PDF

New-Generation Antibacterial Agent-Cellulose-Binding Thermostable TP84_Endolysin.

Int J Mol Sci

December 2024

Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland.

The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry.

View Article and Find Full Text PDF

The Effect of CBM1 and Linker on the Oxidase, Peroxidase and Monooxygenase Activities of AA9 LPMOs: Insight into Their Correlation with the Nature of Reductants and Crystallinity of Celluloses.

Int J Mol Sci

November 2024

The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

This study explores the effect of carbohydrate-binding module 1 (CBM1) and the linker on the function of auxiliary activity 9 (AA9) lytic polysaccharide monooxygenases (LPMOs), with a particular focus on monooxygenase activity, using different crystallinity celluloses and electron donors. The tested C1/C4-oxidizing AA9 LPMOs exhibited higher oxidase and peroxidase activities compared to those of the C4-oxidizing AA9 LPMOs. While the presence of CBM1 promoted cellulose-binding affinity, it reduced the oxidase activity of modular AA9 LPMOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!