This work investigates the effect of multifunctional poly (N-isopropyl acrylamide/acrylic acid/N-tert-butylacrylamide) [p(NIPAM-AA-NTBA)] ternary polymer on the sedimentation of kaolin clay - a major fraction of oil sands tailings. A series of linear, uncross-linked p(NIPAM), p(NIPAM/AA), and p(NIPAM/AA/NTBM) were synthesized as random copolymers, where all monomer units were randomly arranged along the polymer backbone and connected by covalent bonds. The ternary copolymer, used as a flocculant, exhibited thermo-sensitivity, anionic nature, and hydrophobic association due to NIPAM, AA, and NTBM, respectively. As the ternary polymer is thermosensitive, it undergoes extended to coil-like conformation, i.e. hydrophilic to hydrophobic transition, above its lower critical solution temperature (LCST). The comonomers NIPAM (above LCST) and NTBM help expel water out of sediments due to their hydrophobicity, while AA promotes charge neutralization of the kaolin clay particles. The effect of number average molecular weight, charge density, and concentration of NTBM on settling behavior of kaolin suspension was examined. Settling test at 50 °C resulted in significantly higher settling rates compared to that at room temperature. Further, the quality of water recovered in each experiment was tested in terms of its turbidity. These results indicate that this novel ternary polymer can be employed to enhance the recovery of water from oil sands tailings containing clays.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.12.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!