A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Density-Functional Tight-Binding Molecular Dynamics Simulations of Excess Proton Diffusion in Ice I, Ice I, Ice III, and Melted Ice VI Phases. | LitMetric

The structural, dynamical, and energetic properties of the excess proton in ice were studied using density-functional tight-binding molecular dynamics simulations. The ice systems investigated herein consisted of low-density hexagonal and cubic crystalline variants (ice I and I) and high-density structures (ice III and melted ice VI). Analysis of the temperature dependence of radial distribution function and bond order parameters served to characterize the distribution and configuration of hundreds of water molecules in a unit cell. We confirmed that ice I and I possess higher hexagonal symmetries than ice III and melted ice VI. The estimated Grotthuss shuttling diffusion coefficients in ice were larger than that of liquid water, indicating a slower proton diffusion process in high-density structures than in low-density systems. The energy barriers calculated on the basis of the Arrhenius plot of diffusion coefficients were in reasonable agreement with experimental measurement for ice I. Furthermore, the energy barriers for high-density structures were several times larger than those of low-density systems. The simulation results were likely related to the suppression of proton transfer in disordered water configurations, in particular, ice with low hexagonal symmetry.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.7b10664DOI Listing

Publication Analysis

Top Keywords

ice
15
ice iii
12
iii melted
12
melted ice
12
high-density structures
12
density-functional tight-binding
8
tight-binding molecular
8
molecular dynamics
8
dynamics simulations
8
excess proton
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!