iTRAQ Quantitative Proteomic Profiling and MALDI-MSI of Colon Cancer Spheroids Treated with Combination Chemotherapies in a 3D Printed Fluidic Device.

Anal Chem

Department of Chemistry and Biochemistry and ‡Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Published: January 2018

For a patient with metastatic colorectal cancer there are limited clinical options aside from chemotherapy. Unfortunately, the development of new chemotherapeutics is a long and costly process. New methods are needed to identify promising drug candidates earlier in the drug development process. Most chemotherapies are administered to patients in combinations. Here, an in vitro platform is used to assess the penetration and metabolism of combination chemotherapies in three-dimensional colon cancer cell cultures, or spheroids. Colon carcinoma HCT 116 cells were cultured and grown into three-dimensional cell culture spheroids. These spheroids were then dosed with a common combination chemotherapy, FOLFIRI (folinic acid, 5-fluorouracil, and irinotecan) in a 3D printed fluidic device. This fluidic device allows for the dynamic treatment of spheroids across a semipermeable membrane. Following dosing, the spheroids were harvested for quantitative proteomic profiling to examine the effects of the combination chemotherapy on the colon cancer cells. Spheroids were also imaged to assess the spatial distribution of administered chemotherapeutics and metabolites with MALDI-imaging mass spectrometry. Following treatment, we observed penetration of folinic acid to the core of spheroids and metabolism of the drug in the outer proliferating region of the spheroid. Proteomic changes identified included an enrichment of several cancer-associated pathways. This innovative dosing device, along with the proteomic evaluation with iTRAQ-MS/MS, provides a robust platform that could have a transformative impact on the preclinical evaluation of drug candidates. This system is a high-throughput and cost-effective approach to examine novel drugs and drug combinations prior to animal testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5820028PMC
http://dx.doi.org/10.1021/acs.analchem.7b04969DOI Listing

Publication Analysis

Top Keywords

colon cancer
12
fluidic device
12
quantitative proteomic
8
proteomic profiling
8
spheroids
8
combination chemotherapies
8
printed fluidic
8
drug candidates
8
combination chemotherapy
8
folinic acid
8

Similar Publications

Background: Patients with mutant metastatic colorectal cancer (mCRC) have a low incidence rate, poor biological activity, suboptimal response to conventional treatments, and a poor prognosis. In the previous cohort study on mCRC conducted by our team, it was observed that integrated Chinese and Western medicine treatment could significantly prolong the overall survival (OS) of patients with colorectal cancer. Therefore, we further explored the survival benefits in the population with mutant mCRC.

View Article and Find Full Text PDF

Ras gene is frequently mutated in cancer. Among different subtypes of Ras gene, K-Ras mutation occurs in nearly 30 % of human cancers. K-Ras mutation, specifically K-Ras (G12D) mutation is prevalent in cancers like lung, colon and pancreatic cancer.

View Article and Find Full Text PDF

Familial adenomatous polyposis (FAP) is an autosomal dominant hereditary disease characterized by the progressive development of multiple adenomatous polyps along the colon. The majority of individuals develop colorectal cancer by the age of 40 within the evolutionary course of the disease. For this reason, screening family members is essential to enable identification, surveillance, and appropriate intervention.

View Article and Find Full Text PDF

Introduction Colorectal cancer (CRC) represents a major global health burden, significantly impacting mortality rates and healthcare systems worldwide. CRC screening through colonoscopy enables early detection and removal of precancerous polyps. While standard polypectomy suffices for small polyps, larger ones require endoscopic mucosal resection (EMR).

View Article and Find Full Text PDF

Caspase-4 Has Potential Utility as a Colorectal Tissue Biomarker for Dysplasia and Early-Stage Cancer.

Gastro Hep Adv

September 2024

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Background And Aims: Colorectal cancer (CRC) is the second most deadly cancer globally. The rapidly rising incidence rate of CRC, coupled with increased diagnoses in individuals <50 years, indicates that early detection of CRC, and those at an increased risk of CRC development, is paramount to improve the survival rates of these patients. Here, we profile caspase-4 expression across 2 distinct CRC development pathways, sporadic CRC (sCRC) and inflammatory bowel disease-associated CRC (IBD-CRC), to examine its utility as a novel biomarker for CRC risk and diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!