Objective: Regulation of energy balance depends on pro-opiomelanocortin (POMC)-derived peptides and melanocortin-4 receptor (MC4R). Alpha-melanocyte stimulating hormone (α-MSH) is the predicted natural POMC-derived peptide that regulates energy balance. Desacetyl-α-MSH, the precursor for α-MSH, is present in brain and blood. Desacetyl-α-MSH is considered to be unimportant for regulating energy balance despite being more potent (compared with α-MSH) at activating the appetite-regulating MC4R in vitro. Thus, the physiological role for desacetyl-α-MSH is still unclear.

Methods: We created a novel mouse model to determine whether desacetyl-α-MSH plays a role in regulating energy balance. We engineered a knock in targeted QKQR mutation in the POMC protein cleavage site that blocks the production of both desacetyl-α-MSH and α-MSH from adrenocorticotropin (ACTH).

Results: The mutant ACTH (ACTH) functions similar to native ACTH (ACTH) at the melanocortin 2 receptor (MC2R) in vivo and MC4R in vitro. Male and female homozygous mutant ACTH (Pomc) mice develop the characteristic melanocortin obesity phenotype. Replacement of either desacetyl-α-MSH or α-MSH over 14 days into Pomc mouse brain significantly reverses excess body weight and fat mass gained compared to wild type (WT) (Pomc) mice. Here, we identify both desacetyl-α-MSH and α-MSH peptides as regulators of energy balance and highlight a previously unappreciated physiological role for desacetyl-α-MSH.

Conclusions: Based on these data we propose that there is potential to exploit the naturally occurring POMC-derived peptides to treat obesity but this relies on first understanding the specific function(s) for desacetyl-α-MSH and α-MSH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5869732PMC
http://dx.doi.org/10.1016/j.molmet.2017.11.008DOI Listing

Publication Analysis

Top Keywords

energy balance
24
desacetyl-α-msh α-msh
16
stimulating hormone
12
pomc-derived peptides
8
desacetyl-α-msh
8
regulating energy
8
mc4r in vitro
8
physiological role
8
mutant acth
8
acth acth
8

Similar Publications

Introduction: Maternal undernutrition and inflammation in utero may significantly impact the neurodevelopmental potential of offspring. However, few studies have investigated the effects of pregnancy interventions on long-term child growth and development. This study will examine the effects of prenatal nutrition and infection management interventions on long-term growth and neurodevelopmental outcomes of offspring.

View Article and Find Full Text PDF

Alogliptin attenuates testicular damage induced by monosodium glutamate in both juvenile and adult male rats by activating autophagy: ROS Dependent AMPK/mTOR.

Reprod Toxicol

December 2024

Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt; Department of Anatomy, College of Medicine, Al-Baha University, Al-Baha 65525, Saudi Arabia.

Monosodium glutamate (MSG) is one of the most commonly used food additives, known for its adverse health effects. Alogliptin (ALO) is a highly selective dipeptidyl peptidase-4 inhibitor, but its role in male reproductive function remains debated. The study was designed to evaluate and compare the potential of ALO in mitigating MSG-induced testicular toxicity in juvenile and adult male rats.

View Article and Find Full Text PDF

The electrochemical reduction of CO2 to CH4 is promising for carbon neutrality and renewable energy storage but confronts low CH4 selectivity, especially at high current densities. The key challenge lies in promoting *CO intermediate and *H coupling while minimizing side reactions including C-C coupling or H-H coupling, which is particularly difficult at high current density due to abundant intermediates. Here we report a cooperative strategy to address this challenge using Cu-based catalysts comprising Cu-N coordination polymer and CuO component that can simultaneously manage the key intermediates *CO and *H.

View Article and Find Full Text PDF

GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc.

J Phys Chem Lett

December 2024

School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.

Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range.

View Article and Find Full Text PDF

Introduction: There is increasing prevalence of single-use flexible laryngoscopes in Otolaryngology. This study aims to quantify and compare the environmental outcomes of single-use disposable flexible laryngoscopes (SUD-Ls) and reusable flexible laryngoscope (R-Ls).

Methods: The ISO 14040 standardized Life Cycle Assessment (LCAs) was utilized to estimate the environmental footprint of SUD-L and R-L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!