Epigenetic modifications and regulators represent potential molecular elements which control relevant physiological and pathological features, thereby contributing to the natural history of human disease. These epigenetic modulators can be employed as disease biomarkers, since they show several advantages and provide information about gene function, thus explaining differences among patient endophenotypes. In addition, epigenetic biomarkers can incorporate information regarding the effects of the environment and lifestyle on health and disease, and monitor the effect of applied therapies. Technologies used to analyze these epigenetic biomarkers are constantly improving, becoming much easier to use. Laboratory professionals can easily acquire experience and techniques are becoming more affordable. A high number of epigenetic biomarker candidates are being continuously proposed, making now the moment to adopt epigenetics in the clinical laboratory and convert epigenetic marks into reliable biomarkers. In this review, we describe some current promising epigenetic biomarkers and technologies being applied in clinical practice. Furthermore, we will discuss some laboratory strategies and kits to accelerate the adoption of epigenetic biomarkers into clinical routine. The likelihood is that over time, better markers will be identified and will likely be incorporated into future multi-target assays that might help to optimize its application in a clinical laboratory. This will improve cost-effectiveness, and consequently encourage the development of theragnosis and the application of precision medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733278PMC
http://dx.doi.org/10.1080/10408363.2017.1410520DOI Listing

Publication Analysis

Top Keywords

epigenetic biomarkers
20
clinical laboratory
12
epigenetic
9
biomarkers
6
clinical
5
laboratory
5
biomarkers current
4
current strategies
4
strategies future
4
future challenges
4

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

The current review delves into the transformative role of precision medicine in addressing Colorectal Cancer [CRC], a pressing global health challenge. It examines closely signalling pathways, genetic and epigenetic modifications, and microsatellite in-stability. The primary focus is on elucidating biomarkers revolutionizing CRC diagnosis and treatment.

View Article and Find Full Text PDF

Background: The rising incidence of breast cancer and its heterogeneity necessitate precise tools for predicting patient prognosis and tailoring personalized treatments. Epigenetic changes play a critical role in breast cancer progression and therapy responses, providing a foundation for prognostic model development.

Methods: We developed the Machine Learning-derived Epigenetic Model (MLEM) to identify prognostic epigenetic gene patterns in breast cancer.

View Article and Find Full Text PDF

CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

Breast Cancer Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.

View Article and Find Full Text PDF

Greater residential greenness is associated with reduced epigenetic aging in adults.

Sci Rep

January 2025

Office of Research and Development, United States Environmental Protection Agency, 104 Mason Farm Rd., Chapel Hill, NC, 27514, USA.

Potential pathways linking urban green spaces to improved health include relaxation, stress alleviation, and improved immune system functioning. Epigenetic age acceleration (EAA) is a composite biomarker of biological aging based on DNA methylation measurements; it is predictive of morbidity and mortality. This cross-sectional study of 116 adult residents of a metropolitan area in central North Carolina investigated associations between exposure to residential green spaces and EAA using four previously developed epigenetic age formulas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!