Although the use of pedicle screws is considered safe, mechanical issues still often occur. Commonly reported issues are screw loosening, screw bending and screw fracture. The aim of this study was to develop a Finite Element (FE) model for the study of pedicle screw biomechanics and for the prediction of the intraoperative pullout strength. The model includes both a parameterized screw model and a patient-specific vertebra model. Pullout experiments were performed on 30 human cadaveric vertebrae from ten donors. The experimental force-displacement data served to evaluate the FE model performance. μCT images were taken before and after screw insertion, allowing the creation of an accurate 3D-model and a precise representation of the mechanical properties of the bone. The experimental results revealed a significant positive correlation between bone mineral density (BMD) and pullout strength (Spearman ρ = 0.59, p < 0.001) as well as between BMD and pullout stiffness (Spearman ρ = 0.59, p < 0.001). A high positive correlation was also found between the pullout strength and stiffness (Spearman ρ = 0.84, p < 0.0001). The FE model was able to reproduce the linear part of the experimental force-displacement curve. Moreover, a high positive correlation was found between numerical and experimental pullout stiffness (Pearson ρ = 0.96, p < 0.005) and strength (Pearson ρ = 0.90, p < 0.05). Once fully validated, this model opens the way for a detailed study of pedicle screw biomechanics and for future adjustments of the screw design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10255842.2017.1414200 | DOI Listing |
Orthop Surg
January 2025
Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
Objectives: The advent of O-arm navigation optimized the oblique lumbar interbody fusion (OLIF) procedure, allowing the operator to simultaneously perform OLIF and percutaneous posterior pedicle screw implantation without patient position change, thus improving the fluency and accuracy of the OLIF procedure (called as OLIF360). Nevertheless, a consensus regarding its suitability for patients with severe spinal stenosis remains elusive. This study aims to investigate the clinical efficacy of OLIF360 and its imaging changes in severe lumbar spinal stenosis cases.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Spine Surgery, Wuhan Fourth Hospital, Wuhan, China.
Background: Tropical Candida spondylitis is an uncommon cause of lower back pain in patients, especially in non-tropical areas or in patients not at risk of immunocompromise.
Case Presentation: A 65-year-old woman presented with a six-month history of poorly managed low back pain, now accompanied by numbness and pain in both lower extremities. Her medical history was significant for tertiary hypertension.
Surg Pract Sci
December 2024
Spine Surgery Department, Vietduc University Hospital, Viet Nam.
This descriptive longitudinal study aims to assess the risk factors for severe thoracic and lumbar vertebral compression fractures before and after surgery, contributing to preventive knowledge enhancement in communities and effective treatment management. The study involved 34 patients diagnosed with thoracic and lumbar vertebral compression fractures requiring surgery with bio-cement-augmented pedicle screws between June 2021 and June 2022. Postoperative complications, notably adjacent segment injury, were monitored, and patients received osteoporosis management post-surgery.
View Article and Find Full Text PDFJ Korean Neurosurg Soc
January 2025
Department of Neurosurgery, University of Opole, Opole, Poland.
Cement-augmented pedicle screw instrumentation is a widely accepted method for managing osteoporotic fractures, but it carries inherent risks, particularly related to cement leakage and embolism. This study aimed to analyze a clinical case of complications following cement fixation and provide a detailed review of relevant literature. A 70-year-old patient underwent transpedicular screw instrumentation from L2-L4 with polymethyl methacrylate augmentation, which resulted in cement leakage into the spinal canal and subsequent pulmonary embolism.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo, JPN.
Osteoporotic vertebral fractures (OVFs) in elderly patients pose challenges due to bone destruction and surgical risks. This case report describes a minimally invasive approach using calcium phosphate cement (CPC) vertebroplasty and short fusion with cement augmentation of pedicle screws (CAPS) in a 91-year-old woman with severe OVF. The patient underwent CPC vertebroplasty at L1 and CAPS fixation at T12-L2, followed by osteoporosis medication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!