Flavin adenine dinucleotide (FAD), synthesized from riboflavin, is redox cofactor in energy production and plays an important role in cell survival. More recently, riboflavin deficiency has been linked to developmental disorders, but its role in stem cell differentiation remains unclear. Here, we show that FAD treatment, using DMSO as a solvent, enabled an increase in the amount of intracellular FAD and promoted neuronal differentiation of human neural stem cells (NSCs) derived not only from fetal brain, but also from induced pluripotent stem cells. Depression of FAD-dependent histone demethylase, lysine-specific demethylase-1 (LSD1), prevented FAD-induced neuronal differentiation. Furthermore, FAD influx facilitated nuclear localization of LSD1 and its enzymatic activity. Together, these findings led us to propose that FAD contributes to proper neuronal production from NSCs in the human fetal brain during development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715241PMC
http://dx.doi.org/10.1002/2211-5463.12331DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
12
stem cells
12
fad influx
8
differentiation human
8
human neural
8
neural stem
8
nuclear localization
8
localization lsd1
8
fetal brain
8
fad
6

Similar Publications

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Retinal diseases often lead to degeneration of specific retinal cell types with currently limited therapeutic options to replace the lost neurons. Previous studies have reported that overexpression of or combinations of proneural factors in Müller glia (MG) induce regeneration of functional neurons in the adult mouse retina. Recently, we applied the same strategy in dissociated cultures of fetal human MG and although we stimulated neurogenesis from MG, our effect in 2D cultures was modest and our analysis of newborn neurons was limited.

View Article and Find Full Text PDF

Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.

View Article and Find Full Text PDF

Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.

Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.

View Article and Find Full Text PDF

Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!