A 5,5- -luciferin was prepared to measure isotope effects on reactions of two intermediates in firefly bioluminescence: emission by oxyluciferin and elimination of a putative luciferyl adenylate hydroperoxide to dehydroluciferin. A negligible isotope effect on bioluminescence provides further support for the belief that the emitting species is the keto-phenolate of oxyluciferin and rules out its excited-state tautomerization, one potential contribution to a bioluminescence quantum yield less than unity. A small isotope effect on dehydroluciferin formation supports a single-electron-transfer mechanism for reaction of the luciferyl adenylate enolate with oxygen to form the hydroperoxide or dehydroluciferin. Partitioning between the dioxetanone intermediate (en route to oxyluciferin) and dehydroluciferin is determined, not by the fate of the hydroperoxide, but by that of the radical formed from luciferyl adenylate, and the kinetic isotope effect (KIE) reflects H-atom abstraction by superoxide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715289PMC
http://dx.doi.org/10.1002/open.201700136DOI Listing

Publication Analysis

Top Keywords

luciferyl adenylate
12
isotope effects
8
hydroperoxide dehydroluciferin
8
β-deuterium isotope
4
effects firefly
4
firefly luciferase
4
bioluminescence
4
luciferase bioluminescence
4
bioluminescence 55-
4
55- -luciferin
4

Similar Publications

Beetle luciferases catalyze the bioluminescent oxidation of D-luciferin, producing bioluminescence colors ranging from green to red, using two catalytic steps: adenylation of D-luciferin to produce D-luciferyl-adenylate and PPi, and oxidation of D-luciferyl-adenylate, yielding AMP, CO, and excited oxyluciferin, the emitter. Luciferases and CoA-ligases display a similar fold, with a large N-terminal domain, and a small C-terminal domain which undergoes rotation, closing the active site and promoting both adenylation and oxidative reactions. The effect of C-terminal domain deletion was already investigated for Photinus pyralis firefly luciferase, resulting in a red-emitting mutant with severely impacted luminescence activity.

View Article and Find Full Text PDF

Characterisation of utrophin modulator SMT C1100 as a non-competitive inhibitor of firefly luciferase.

Bioorg Chem

January 2020

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PQ, UK. Electronic address:

Firefly luciferase (FLuc) is a powerful tool for molecular and cellular biology, and popular in high-throughput screening and drug discovery. However, FLuc assays have been plagued with positive and negative artefacts due to stabilisation and inhibition by small molecules from a range of chemical classes. Here we disclose Phase II clinical compound SMT C1100 for the treatment of Duchenne muscular dystrophy as an FLuc inhibitor (K of 0.

View Article and Find Full Text PDF

Firefly luciferase has been widely used in biotechnology and biophotonics due to photon emission during enzymatic activity. In the past, the effect of amino acid substitutions (mutants) on the enzymatic activity of firefly luciferase has been characterized by the Michaelis constant, K. The K is obtained by plotting the maximum relative luminescence units (RLU) detected for several concentrations of the substrate (luciferin or luciferyl-adenylate).

View Article and Find Full Text PDF

A 5,5- -luciferin was prepared to measure isotope effects on reactions of two intermediates in firefly bioluminescence: emission by oxyluciferin and elimination of a putative luciferyl adenylate hydroperoxide to dehydroluciferin. A negligible isotope effect on bioluminescence provides further support for the belief that the emitting species is the keto-phenolate of oxyluciferin and rules out its excited-state tautomerization, one potential contribution to a bioluminescence quantum yield less than unity. A small isotope effect on dehydroluciferin formation supports a single-electron-transfer mechanism for reaction of the luciferyl adenylate enolate with oxygen to form the hydroperoxide or dehydroluciferin.

View Article and Find Full Text PDF

To elucidate the emission process of firefly d-luciferin oxidation across the pH range of 7-9, we identified the emission process by comparison of the potential and free-energy profiles for the formation of the firefly substrate and emitter, including intermediate molecules such as d-luciferyl adenylate, 4-membered dioxetanone, and their deprotonated chemical species. From these relative free energies, it is observed that the oxidation pathway changes from d-luciferin → deprotonated d-luciferyl adenylate → deprotonated 4-membered dioxetanone → oxyluciferin to deprotonated d-luciferin → deprotonated d-luciferyl adenylate → deprotonated 4-membered dioxetanone → oxyluciferin with increasing pH value. This indicates that deprotonation on 6'OH occurs during the formation of dioxetanone at pH 7-8, whereas luciferin in the reactant has a 6'OH-deprotonated form at pH 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!