Background: The development of male- or female-specific phenotypes in squamates is typically controlled by either temperature-dependent sex determination (TSD) or chromosome-based genetic sex determination (GSD). However, while sex determination is a major switch in individual phenotypic development, it is unknownhow evolutionary transitions between GSD and TSD might impact on the evolution of squamate phenotypes, particularly the fast-evolving and diverse genitalia. Here, we take the unique opportunity of studying the impact of both sex determination mechanisms on the embryological development of the central bearded dragon (). This is possible because of the transitional sex determination system of this species, in which genetically male individuals reverse sex at high incubation temperatures. This can trigger the evolutionary transition of GSD to TSD in a single generation, making an ideal model organism for comparing the effects of both sex determination processes in the same species.
Results: We conducted four incubation experiments on 265 eggs, covering two temperature regimes ("normal" at 28 °C and "sex reversing" at 36 °C) and the two maternal sexual genotypes (concordant ZW females or sex-reversed ZZ females). From this, we provide the first detailed staging system for the species, with a focus on genital and limb development. This was augmented by a new sex chromosome identification methodology for that is non-destructive to the embryo. We found a strong correlation between embryo age and embryo stage. Aside from faster growth in 36 °C treatments, body and external genital development was entirely unperturbed by temperature, sex reversal or maternal sexual genotype. Unexpectedly, all females developed hemipenes (the genital phenotype of adult male ), which regress close to hatching.
Conclusions: The tight correlation between embryo age and embryo stage allows the precise targeting of specific developmental periods in the emerging field of molecular research on . The stability of genital development in all treatments suggests that the two sex-determining mechanisms have little impact on genital evolution, despite their known role in triggering genital development. Hemipenis retention in developing female , together with frequent occurrences of hemipenis-like structures during development in other squamate species, raises the possibility of a bias towards hemipenis formation in the ancestral developmental programme for squamate genitalia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716226 | PMC |
http://dx.doi.org/10.1186/s13227-017-0087-5 | DOI Listing |
J Anim Ecol
January 2025
Faculdade de Ciências da Universidade do Porto, Centro de Investigação em Ciências Geo-Espaciais (CICGE), Vila Nova de Gaia, Portugal.
Global trends in marine turtle nesting numbers vary by region, influenced by environmental or anthropogenic factors. Our study investigates the potential role of past temperature fluctuations on these trends, particularly whether warmer beaches are linked to increased nesting due to higher female production (since sea turtles have temperature-dependent sex determination). We selected the loggerhead turtle (Caretta caretta) due to its wide distribution, strong philopatry and vulnerability to environmental changes.
View Article and Find Full Text PDFJ Pediatr Endocrinol Metab
January 2025
Department of Genetics, Reproductive Biomedicine Research Center, 48499 Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran.
Differences of sex development (DSD) refer to various congenital conditions affecting the urogenital and hormonal systems. Accurate diagnosis and personalized management are crucial for supporting patients through complex decisions, such as those related to gender identity. This study represents the first comprehensive investigation into DSD in Iran, analyzing patient's clinical and genetic data between 1991 and 2020.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, Japan.
In mammals, SOX9/Sox9 expression in embryonic gonads is essential for male gonadal sex determination. Multiple enhancers of Sox9 have been identified, of which the mXYSRa/Enh13 enhancer plays a crucial role in mice. SOX9 and SRY binding sites within the enhancer have been identified as functional.
View Article and Find Full Text PDFPoult Sci
January 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China. Electronic address:
China is the largest producer and consumer of geese with significant social and economic value in agriculture. The Jilin White Goose, known for its excellent egg-laying and reproductive characteristics, is a prominent breeding breed in the northeast of China widely used for cross-breeding.Gonad development is a complex process, which will differentiate into testes or ovaries, thus affecting sex determination.
View Article and Find Full Text PDFJ Clin Hypertens (Greenwich)
January 2025
Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
The aim of this study was to explore whether 24-h ambulatory central (aortic) blood pressure (BP) has an advantage over office central aortic BP in screening for hypertension-mediated target organ damage (HMOD). A total of 714 inpatients with primary hypertension and the presence of several cardiovascular risk factors or complications involving clinical HMOD were enrolled. Twenty-four hour central aortic BP was measured by means of a noninvasive automated oscillometric device (Mobil-O-Graph).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!